FINAL EVALUATION REPORT
Microsoft Corporation
SQL Server 2000
Version 8.0

Science Applications International Corporation
Center for Information Security Technology Lab
7125 Columbia Gateway Drive, Suite 300
Columbia, MD 21046

August 11, 2000

Table of Contents

1 INTRODUCTION ..ot e e e e e e e e e e e eaaeeeaneees 1
11 Evaluation ProCeSS OVEIVIEWuuiiiiiiiiieeiiiee et et e st e e e e e e s nnneee e e 1
1.2 DocUMENT OrganiZationccccoieieieie e 1
2 SYSTEM OVERVIEWo 3
21 ATCHITECTUIE OVEIVIEW ...ttt e e ettt e e e e e e e et e e e e e e e e antnneeeeaaeeean 3
211 OPEN DAA SEIVICES. ...ttt sttt sttt ettt b e st b e et b e bbb et be et b e st b e 5
212 TASK MANAGEMENT ...ttt ettt ettt e et eb e et eb e s b e b se e e ebesb e e ebesreneas 5
213 MEMONY MANGET ..ot sre e ne s 5
214 REIBLTONAl ENQINE......c.citiiiiietiiieiet ettt bbb s e s nb b se b nnenes 6
215 SLOTAOE ENQINE.....eeiteieeeete ettt et st b e et b e et b et b et b e 6
216 Backup and ULIITIES........oeiiiiiiee et 7
217 O S V= g o (= o | PRSP PPTSRTRI 7
218 AAMINISIIEIOr TOOIS.ccviveeeerirreeerereeeere st r e e e sr e e e resr e eresr e eresreneas 7
2.2 IO 2 20 1] €= = Vo PSSP RRRR 7
221 UNErUSEEA INEEITACE.vieceeieieeertiee e 8
222 TrUSEEA INEEITACE......ceeeeeee e 11
23 System Tables and Databasesovoiiiiiiiiiii e 12
231 SYSEEM TADIES.....cecteeee e bbb 12
232 SYSLEM DALBIDBSES.........eeeeeeireieetert et b 14
3 COMPOSITE TRUSTED COMPUTING BASE.......cooeiiieieeeee e 16
3.1 Server Database Management System CONCEPLSccovuveieriiiiiieiiiiiie e 16
3.2 Composite Trusted Computing Base Security POlICY......cccocoiiiiiiiiiiiieiece e, 17
3.3 ComposSite TCB ArChITECIUIEoi i 17
331 Operating SYySteM PriVIIEgES.ooueiiiieirierte e e 17
332 SQL Server COMMUNICALIONScoueieesieiererereeieeeseesteseestessesseseeseeseeseessessessessessesssensessessesses 18
3.4 Windows NT Security TermiNOlOQY ... s 18
4 SYSTEM ARCHITECTURE ... 20
4.1 Memory ManagemeENTcoooiiiiii e 20
4.2 TASK MANAGEMEBNT ...ttt e ettt e et e e e b e e e e areas 21
421 TasK SCHEOAUIING.veveeeerereecere e re e 21
422 QLIS QT o U 14 o] RSP 22
423 UMS Data SITUCKUFES ..ottt Error! Bookmark not defined.
4.3 Storage ENQiNe. ... 23
4.3.1 DiSK MBNAGEIMENL ...ttt sttt ettt st b e et sb et b se et et esee e ebesaeneebeseeneas 24
4.3.2 ACCESS MELNOMS ...ttt ettt e e see st sae et e ene e e e neeseeneenes 27
4.3.3 Transaction ManNagEMENT...........eoiii ettt b e e e 27
434 o] o= 1o o 1SS 30
4.4 REIAtiONAl ENGINE ...ttt sttt bb e e s enneee s 31
44.1 EVENE HANAIENS......cececeeeee e e nr e nrenea 32
442 QUETY PrOCESSONeivviiiiteesiie e site e st s e ste e st e st s e s e s b e e e abe e st e e e abe e st e e e abe e sabe e s beenabeeeneenates 34
4.5 SQL SEIVEI AGENT .ttt e e e e e e e e s e e e s e 37
4.6 BaCKUP @nd RESTOIE ... 37
4.6.1 Backup/Restore USer Datahasesccuiveerierieirie ettt s sre s sre e 37
4.6.2 BUlk Copy Program (BCP) ..ottt st sre e sbe s sbe e 38
4.6.3 BACKUD DBVICES ...ttt ettt b et sttt b e e b seenea 38
4.7 Startup and ShUutdOWN ... 38

4.8 AdMINISIrAtOr TOOIS .oiiii i e s e e e e s e eeeee e s 39
48.1 ENLErPriSe MaANAOENccve ettt e e s e s ae et e et e e e eneesbe e te e reensennnesanas 39
4.8.2 QUENY ANBIYZEN ...ttt bbbttt b e bt b 39
4.8.3 Client NEtWOIK ULHTTYc.eieieiiiieees e 39
484 PrOFHEN . 40

5 SECURITY ARCHITECTURE ..ot 42

51 ProteCted RESOUICES ..oiiiiiiiiiiiiiiee ettt e e e e e s et e e e e e e s s st e e e e e e e e snnnreaeeeas 42
511 SUDJECES. .. ettt bbbt et bRt b e e e e R e b eh e b e Rt ene et e r e srennas 42
512 L0 o] 1= ot £ F U P R SR SO PTPPPRO 42

5.2 Identification and AUThENtICAtIONeiiiii i 42
521 SQL Server [dentifiCationccceceiireiesere ettt ne et e e 42
5.2.2 AUthentiCation t0 SQL SEIVENcuiieiiieie ettt sttt e e e eeaes 44
523 Administration Of USEr ACCOUNESoouiieiieiieeeieiesies et st sr s eeeeseeseenes 45
524 AULhentiCation MaNAgEIMENLcoieiiireeee ettt bbb re e 45
525 Password Length, Age, and UNIQUENESS..........ccureriiirierieenesieeete st esre e esseseeesre e 45

5.3 SQL SEIVEN ROIES ...ttt r e e e e s e st e e e e e e s e sanbaneeaeeeeaannnne 45
53.1 PrivilEged ROIES.......ceece e e et e e eaenneas 45
532 USEE ROIES.... ettt et b ettt s e bbbt et e nas 47

5.4 Discretionary ACCESS CONTIOL..c.ciuuiiiiiiiiiieiiie e 47
541 PEIMISSIONSttt et b ettt bbbt b et ae e e e e et et b e Rt e ne e e e e e b e 47
542 Granting and ReVOKIiNG PErMISSIONS.........coureiririeirinieeses s e 48
54.3 ODJECE DEPENAENCIES ...ttt bbb bbb b 49
54.4 DAC ALGOITERIM Lttt et b ettt b e et b e e e b e 49

55 F U Lo 1 P PP P PTPPPPPPPPT 50
55.1 PN U To (1 2 (= oo o N ©1= o= = 1 o] o ISP 50
5.5.2 F N0 0= o = o1 RSP 50
553 AUIT SEIECLION ...t s b et s b e e e b e 51
554 AUIT DAEALOSS ...ttt sttt et b et be et e et sh e bbb e et e e e e e e b e 51

5.6 ODJECT REUSE ...ttt ettt s et e e s s bt e e ebbe e e e e nreas 52
56.1 DBLADESESe ettt sttt bbbt e e bbbt ae e e nr e b et b e Rt ne e e e e e e e 52
56.2 PAgIES ..ttt bt e R bRt b e Rt a e et e R e be Rt eRe Rt ehe e e e nn et e 52
56.3 ROWUS .ttt bbbttt e e b e bt e bt s Rt e a e et e es et e seeeb e Rt ene e e e e e te e 52
564 SYSLEM Data SITUCLUMES........eeeieeieeee sttt s nes 52
5.6.5 LI IS] = ot 1 £ RSP 52

6 ASSURANCES. ... 54

6.1 SYSTEM ATCNITECIUTE ..eiiiieie e 54

6.2 ST To U] YA =] A1 [OO POUP P PPPPPO 54

6.3 DeSigN DOCUMENTALIONeiiiiiiiiieiiiiie ettt e e e e e s eneeeens 55

7 EVALUATION AS A C2 SYSTEM....coni e 58

7.1 Discretionary ACCeSS CONTIOl...cccciiiiie i 58

7.2 ODJECT REUSE ...ttt ettt e s et e e s st e e e e bbe e e e anreas 58

7.3 Identification and AUthentiCAtIONeiiiii i 59

7.4 Y U o 1 PSPPSR 59

7.5 SYSTEM ATCNITECIUTE ..eiiiieii e 60

7.6 SYSTEM INTEGTITY ©eeieieiiiie it s b e e e e s eebe e e e e e 61

7.7 SECUNLY TESHING coiieieeeeeeeeee 61

7.8 Security Feature’s Users GUIde ... 62

7.9 Trusted Facility ManUAaovuiiiiieiieieiiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeseeeseesessssssssessessssesnnenes 62

7.10 TeSt DOCUMENTALION ..ottt e e e e bbb r e e e e e e e anabnreeeaeeeeean 63

7.11 DeSign DOCUMENTALION ..o 64

6 ITCSEC MAPPING ... et 66

APPENDIX A LIST OF ACRONYMS ... 70
APPENDIX B SYSTEM TABLESo 72
APPENDIX C EVALUATED COMPONENTS ... 78
Cl Operating System COMPONENTSuuiiiiiiiiie ittt 78
C.2 SQL Server COMPONENTScooiiiiiiiieiee et e e r e e e e s s eer e e e e e sannnnes 78

List Of Figures

Figure 2-1 SysStem ATCHITECLUIE...........ei ettt e e s ee s e e saeesaeeneeenneenneereenneens 5
FigQUre 2-2 TCB INLEITACE.ccueeiteeie ettt s st ste et et e e e st et e e e e teeatesseesaeesaeesaeenseenseaneenseensenns 8
Table 2-1 ODS SUPPOITEA EVENLES.......cccueieeieeie e ceeette st e e e e ee e sreesaeeteeeeesaessaeste e teentesneesnnesneesreeseenns 9
Tahle 2-2 SRV _PROC SHTUCLUIEccueeieieiiesiesieeteeieieseeseestessessesseessessessessessessesseessessessessesssssessesnsensessenseses 10
Table 2-3 ODBC FUNCLiONal COMPONENES........ctitiieririiieterieeeieseese ettt se e s sae s sb s s nnenes 12
Table 2-4 Global SQL Server System TablES........occuiiiieirieee s 13
Table 2-5 Database LoCal SyStem TahIES.........cviiiciriieereeeeree e 14
Tabhle 2-6 SyStEM DalalasESc.coveeeverieiet sttt b bbbt nenes 14
Figure 3-1 COMPOSITE TCBciuiieiiriiieierttie ettt bbbt b et b ekt b e bt st e e ne b e 16
Figure 4-1 SQL Server ACArESS SPACE........ccueiieriierieeiestesieesee st e steesteste st e sreeste e te e e etesssesaeesaeesaeenseenseenns 21
Figure 4-2 Task Stale TranSItiONS.........ccuveueiiesieieeie e s e seeseesaeeseeestesee e e sreesre e te e e etesssesneesaeesneesneenseenns 23
Figure 4-3 UMS Data SITUCLUFEScecuveeeieetieciee et see e et Error! Bookmark not defined.
FigUre 4-4 StOrage ENQINE........oiieieeiee et et te st e sae e s teeteeaeeaseeseeste e teenteentesnsesneesaeesneenneenseanns 23
Figure 4-5 Datalase FilEQrOUDS. ...cueeiui e stees et e s te s e s e saeesaeetesaeesaseereeste e te e teentesntesneesaeesneenneennennns 25
FiQUIE 4-6 PagE SITUCIUIEeeieeecie ettt stee sttt st e s st e sae e s teeteeaeeeseesseesse e teenteensesneesneesaeesneenneennennes 25
Figure 4-7 Access Methods ODJECES..........coieeirinieerieerieee e Error! Bookmark not defined.
Figure 4-8 Transaction LOg REPIESENTALION.c.eeiirieiriiieeriee st 28
Figure 4-9 Relational ENginNg ArChItECIUIE...........ccueiiirieiirieeriesie e e 32
Figure 5-1 SQL Server 1AdentifiCalionooeeiirieirieireie et e 43
Figure 5-2 Ownership Chain EXBMPIEoouiiiiiiiieee e e e 49

List of Tables

Table 2-1 ODS SUPPOITEA EVENLS.cccueieeieeiiecie e eie st et e e e e eeseesseesaeenteeseeesaessaesseeseensesneesneesseesseensnenns 9
Table 2-2 SRV _PROC SITUCIUIEc.veiieiie e cteesteeste et e et e ste e e e teestesaesaeesneesseesseenseessesneesseesseensesnsessensnns 10
Table 2-3 ODBC FuNCtional COMPONENTS.........cciiieiieiieieeieeseeseesteeseeseeseesreesseesseeseessesssesseesseessesnsessesnees 12
Table 2-4 Global SQL Server System TabhIES........occciiiieieeeee e 13
Table 2-5 Database LoCal SyStem TaDIES........ccviiieiiieeeeeree e 14
Tabhle 2-6 SyStEM DalaaSEScoveueeeerieeetisiee ettt b et b et b et nenes 14
Table 3-1 KERNEL32 DLL CallS...cciioiiieieecieee ettt Error! Bookmark not defined.
Table 3-2 ADVAPI32DLL CallS....cciiiieiieeceee ettt Error! Bookmark not defined.
Table 3-3 RPCRTA DLL CallS ...ttt Error! Bookmark not defined.
Table3-4 OLE32 DLL CallS....cccoiiiiieieeiere e Error! Bookmark not defined.
Table 3-5 VERSION DLL CallS.......cocciiiiiieiiseeeeeeeee s Error! Bookmark not defined.
Table 4-1 ODS GENEratet EVENLS........coouiie ettt sttt st st b et e e e et et eb e se e e e e e e b e 33
Table5-1 SQL Server IAENUITIErS. .. .ccv ettt e esra et e e re e e eneesneesnnas 43
Table 5-1 Server ROIE DESCIIPLIONS.ccciiie e csie ettt et te e s sre e s e e sae et e enaesreesseeste e beensenneesnnas 46
Table 5-2 Database ROIE DESCIIPLIONS........cceiieeiecie ettt e e s sreesae e e e naesneesseesteebeeneesneesnnas 47
Table5-3 OBJECE PEIMISSIONS. ...ttt bbbt b et b bbb s s b nenes 48
TaDIE5-4 AUAIT CBIEGOTTES.eevieieetertieetert ettt ettt ettt bt e b b e bt b e st b e e bt s b e b bt st et enenbenenes 51
TADIE 61 TESE SUITESeicuiicteecteete ettt ste ettt et e s be e be e beetesaeesaeesheesbeenseentesssesbeenbaesbeenteentesneesaeas 55
Table B-1 Master Database TallES.........couiiiiieecie ettt sttt e b et e e be e beenbesneesaeas 73
Table B-2 SQL Server AQENt TaIES.....ccciiieiiiet et 73
Table B-3 Database Backup and ReStOre Tabl€S..........oiiiiieiiericiece s 74
Table B-4 Replication Tablesin Master Datalase...........c.ccveieerieieiie e ee e 74
Table B-5 Replication Tablesin Distribution Databasecccveieeieiie e 75
Table B-6 Databhase System TaDIESccciiie ettt e st teentesneesneas 76
Table B-7 Replication Tablesin User’ SDatabhasecccvveeieeiecii et e e 76

vi

1 Introduction

In November 1998, Science Applications International Corporation (SAIC) began a product evaluation of
Microsoft SQL Server 2000 Version 8.0 running on Windows NT Server and Workstation Versions 4.0
Service Pack 6aand C2 Update, all products of the Microsoft Corporation. This report gives evidence and
analysis of the security features and assurances provided by Microsoft SQL Server 2000 Version 8.0. This
report documents the evaluation team’ s understanding of the product’ s security design and appraises its
functions and integrity against the C Division security requirements of the Trusted Database I nterpretation
(TDI) of the Trusted Computer System Evaluation Criteria (TCSEC). Material for this report was gathered
by the SAIC eval uation team through documentation, interaction with system developers, and testing.

1.1 Evaluation Process Overview

The Trust Technology Assessment Program (TTAP) evaluation process consists of two high-level phases:
Pre-Evaluation and Evaluation. Pre-Evaluation consists of those activities that are recommended for a
TTAP evaluation facility (TEF) to complete prior to beginning an evaluation to ensure that the product and
its associated evaluation evidence are ready for evaluation. An inadequately tested product or incomplete
documentation can substantially delay the schedule and increase the cost of an evaluation. Because the pre-
evaluation activities occur only between the TEF and the vendor, TTAP imposes no requirements during
this phase.

Evaluation begins with aformal agreement between the vendor and the TEF. All contract negotiations,
including any discussions regarding the price of an evaluation, the nature or conditions of payment, and the
schedule for the evaluation, are |eft entirely up to the TEF and the vendor. After the vendor and the TEF
sign a contract, the TEF submits the name of the vendor, the name and type of product, the schedule, and
the members of the evaluation team to the TTAP Oversight Board. The evaluation may begin as soon asthe
contract is signed. Note that no authorization to proceed is needed from the Oversight Board; the
notification is simply to allow the board to allocate and schedule Technical Review Board (TRB) resources.

Work on the evaluation begins after the agreement is sighed. The evaluation team must determine that the
system meets all of the TCSEC C2 requirements, and prepare and defend an Initial Product Assessment
Report (IPAR) documenting this determination. Since such a determination requires the team to understand
the system to alevel at which such analysis can be made, evaluation evidence in the form of design
documentation, training, informal vendor presentations, etc., is provided by the vendor to the evaluation
team. This process typically begins when the vendor provides the evaluation team with product
documentation (design, test, user, etc.) and system-level, developer-oriented training for the vendor's
product. Training is followed by a comprehensive review of the system design by the evaluation team. The
team performs security analysis of the product design. The team analyzes the system design and reviews
the user and test documentation. The information gathered during design analysisis used to write an |PAR,
which the team presentsto a TRB. The team also briefs the TRB on the vendor's and the team's plans for
testing the product.

After the IPAR/Test TRB meeting, the eval uation team performs security testing on the product. The test
results are combined with the IPAR and edited to form the Final Evaluation Report (FER). The evauation
team presents final responses to open issues and the results of testing to aFinal TRB. The TRB makesits
recommendations to the TTAP Oversight Board regarding the product's requested trust rating. The
Oversight Board then makes the final decision to place the evaluated product on the Evaluated Product’s
List (EPL) at the requested level. Finally, the EPL entry and the FER are published, and the evaluation
documentation is archived.

1.2 Document Organization

This report consists of eight chapters, and three appendices. Chapter 1 is an introduction. Chapters 2
through 6 provide an overview of the system, its interaction with the operating system, software
architecture, and a description of the security support (protection mechanisms and assurances). Chapters 7

and 8 provide a mapping between the requirements specified in the TDI and Interpreted TCSEC (ITCSEC)
and the system features that fulfill those requirements.

Appendix A providesalist of acronyms. Appendix B provides alisting of the system tablesin the SQL
Server. Appendix C enumerates the components of the evaluated configuration.

2 System Overview

The Microsoft Corporation was founded in 1975 and has developed many commercial applications such as
SQL Server, Excel, Word, Works, and PowerPoint. SQL Server 8.0 isaclient/server relational database
management system.

The evaluated configuration for SQL Server 8.0 includes one or more SQL Server instantiations installed
on any number of both the Windows NT Server and the Windows NT Workstation products. The
Windows NT products may act in any one of the following roles, connected via a network consisting of
zero or more Windows NT domains:

Microsoft Windows NT 4.0 Server product

e Primary Domain Controller (PDC);

e Backup Domain Controller (BDC);

e Non-Domain Controller (domain member); and
e Non-Domain Controller (non-domain member).

Microsoft Windows NT 4.0 Workstation product
* Domain member; and
¢ Non-domain member.

The evaluated configuration supports replicated databases. This permits copies of whole or partial
databases to exist on multiple SQL Server installations. However, the evaluated configuration does not
support distributed databases. That is, data cannot be combined from different SQL Server installations to
form a single database.

The evaluated configuration assumes that the physical network infrastructure (e.g., Ethernet) is protected
and controlled by a single security administrative authority. Thisassumption is driven by the fact that a C2
evaluation does not generally address cryptography and other means of protection against unauthorized
individuals that are able to gain physical accessto the network media. Instead, the assumed scope of the
C2 homogeneous network eval uation is the “system security architecture,” assessing the ability of the SQL
Server security architecture to protect resources from inappropriate access viathe untrusted user and
programming interfaces provided by each SQL Server product running on a Windows NT system node on
the network.

There are afew commonly available SQL Server components that are not included in the eval uated
configuration. Those components specifically not included in the 8.0 evaluation include:

» Distributed Transaction Coordinator;
e SQL Server Full-text Search;

e SQL Mail; and

e SQL Server Failover Support.

The next section will present an overview of the architecture of the SQL Server. The architecture will be
explained in greater detail throughout the remainder of the report.

21 Architecture Overview

SQL Server is a database management system implemented using a client-server architecture. The SQL
Server code that runsin the client and the code that runsin the server are the same and differ only in the
installation options. Both SQL Server client and server configurations run on top of Windows NT 4.0
Service Pack 6aand C2 Update. This section provides an overview of the SQL Server architecture; the
next chapter discusses SQL Server’sinteractions with Windows NT.

The client side of the SQL Server client-server architecture is part of the evaluated product because all
administrative tools run on the client. Therefore the administrative tools, the libraries they use, and the
protocols running in the client must work correctly to ensure that SQL Server administration performs as
expected by the administrator. All security enforcement on the client side of SQL Server is provided by the
underlying Windows NT 4.0 operating system. This security enforcement includes protection of the SQL
Server executables and Dynamically Linked Libraries (DLLS).

The server side of the architecture, SQL Server, performs all security enforcing operations on behalf of
applications running in the client. SQL Server runs on the server side as a trusted application with specific
restricted permissions. When SQL Server isinitialized, Windows NT creates an address space for SQL
Server. Within that address space SQL Server executes as a process and performs its own memory
management, managing the address space of requests for services from user client applications and external
server requests. SQL Server requests and is assigned a pool of threads from Windows NT. Within this
pool, SQL Server performs its own process management using the threads assigned to isolate individual
task execution. SQL Server can also use fibers (light-weight threads), to perform process isolation between
application requests whereby SQL Server does not require an operating system context switch to switch
from one user context to another.

SQL Server relies upon Windows NT to perform user identification and authentication. For other security
mechanisms including Discretionary Access Control (DAC) and audit, SQL Server providesits own
support.

As described in this evaluation report, the SQL Server TCB includes the following system components:

e Open Data Services,

e Task Management;

e Memory Manager;

» Relational Engine;

» Storage Engine;

» Backup and Restore;

e SQL Server Agent; and
e Administrator tools.

The following sections provide an overview of the system components. Figure 2-1 System Architecture
shows the system components.

CLIENT WINDOWS NT NETWORK

OPEN DATA SERVICES
TASK MEMORY
MANAGEMENT MANAGER
SQL
SERVER RELATIONAL ENGINE
AGENT
BACKUP
&
STORAGE ENGINE uniry

Figure 2-1 System Architecture

2.1.1 Open Data Services

The TCB interface for unprivileged programs accessing SQL Server is Open Data Services (ODS). ODSis
the only interface between the SQL Server and clients performing requests. ODS processes Tabular Data
Stream (TDS) packets to identify the type of packet and trand ate the packet type into a specific request
type. TDSisan application-level protocol specific to SQL Server and is described more in the next section.
All responses to user application requests return to the client through ODS.

2.1.2 Task Management

Task management is performed by the User Mode Scheduling (UM S) component that provides an OS-like
environment for threads", including scheduling, and synchronization —all running in user mode, all (except
for 1/0) without calling the Windows NT kernel. UMS performs similarly to any process management
within an operating system in that whenever a SQL Server component requires an execution context to be
established, it callsUMS. UMS ensures separation of execution domains and performs execution
scheduling. Client application requests participate in cooperative scheduling, voluntarily relinquishing
control of the CPU so that the scheduler may process another execution context. Thereis no time-glicing or
preemptive scheduling within UMS.

2.1.3 Memory Manger

The memory manager is responsible for the SQL Server memory pool. The memory pool is used to supply
SQL Server with its memory while it is executing. Almost all data structures that use memory in SQL
Server are alocated in the memory pool. The memory pool aso provides resources for transaction logging
and data buffers.

! Throughout the report the threads will be discussed as the unit of execution when either threads or fibers
can be used.

2.1.4 Relational Engine

All security-relevant decisions are made in the relational engine. The relational engine establishes a user
context, syntactically checks every TSQL (Transact SQL)? statement, compiles every statement, checks
permissions to determine if the statement can be executed by the user associated with the request, optimizes
the query reguest, builds and caches a query plan, and executes the statement. The main components of the
relational engine are the event handlers, the query processor, the execution engine, and cursor support.

Each event handler calls a function within the relational engine and passes the appropriate elements of the
TDS packet as arguments to the function. Similarly, when SQL Server needs to send information to the
client, it calls the event handler which transforms the function call argumentsinto TDS events, and, using
the callback, returnsto ODS which builds TDS packet(s) for the event type with the information to be
returned. ODS, in turn, sendsthe TDS packets to the client.

The query processor builds a query plan from TSQL statements. TSQL statements are parsed, optimized
and prepared for execution. Within the query processor access permissions to objects are checked before
optimization takes place. The output of the query processor, the query plan, is always placed in the
procedure cache.

The execution engine executes a query plan from the procedure cache. The execution engine acts upon
SQL server objects by requesting them from the storage engine. Once processing for a SQL statement is
complete, the query processor returns the result to the appropriate event handler.

Cursor support exports an interface to allow the responses to client request to be formatted for windows
with full cursor support.

2.1.5 Storage Engine

The storage engine is aresource provider. When the relational engine attempts to execute a TSQL
statement that accesses an object for the first time, it calls upon the storage engine to retrieve the object, put
it into memory and return a pointer to the execution engine. To perform these tasks, the storage engine
manages the physical resources for SQL Server by making Windows NT kernel calls. When the relational
engine (typically the execution engine) calls the storage engine to perform 1/0, all access checks have been
completed and the storage engine acts as an 1/O processor. The main components of the storage engine are
the access methods, page manager, transaction manager, lock manager, replication manager, log manager,
and buffer manager.

The access methods and buffer manager provide in-memory support for database objects. The page
manager supports retrieving database objects from disk.

The transaction manager works with the lock and log managers to control and log database transactions.
The lock manager ensures transactional consistency. The log manager provides interfaces to three different
types of logs: the transaction log, error log and the job history log. The log manager provides interfaces to
set up, view, clear, display, resize, write, and delete the appropriate log and to backup the current
transaction log.

Every SQL Server database has a transaction log that records all transactions and the modifications made
by the transactionsin the database. SQL Server exports an interface into the transaction log for the recovery
of individual transactions, recovery of all incomplete transactions when SQL Server is started, and rolling a
restored database forward to the point of failure.

The replication agents support replicated database information across SQL Server installations. The
replication agents transfer updates between the copies of the databases.

2 Transact SQL isthe version of SQL that SQL Server uses for query processing. It is compliant with the
SQL-92 standard.

2.1.6 Backup and Utilities

SQL Server utilities are a set of routines that typically support two functional areas: the Database
Consistency Checker (DBCC) and backup.

The DBCC commands check the logical and physical consistency of a database, check memory usage,
decrease the size of adatabase, and check performance statistics. Backup and restore utilities provide the
capability to backup and restore a database. An administrator, the database owner or a user with
appropriate authorization can create a database backup. A database can either be restored with the same
name as an existing database or restored as a new database

217 SQL Server Agent

SQL Server Agent is a separate executable program that provides interfaces to create jobs and alerts. Jobs
are a set of actionsto be taken at a scheduled time. Alerts are actions to take when a specific event occurs
(e.g., notify a person identified in the job when some action has occurred).

2.1.8 Administrator Tools

SQL Server provides severa administration tools. These tools can be used to manage al aspects of the
SQL Server including logins, access permissions, queries, and client connections. The administrator tools
run on the client and are supported by several network libraries. These libraries are discussed in the next
section. See Section 4.8 Administrator Tools on page 39 for a complete list of the administrator tools.

2.2 TCB Interface

An untrusted user requests services from the TCB through the TCB interface. The untrusted user interface
for SQL Server is Open Data Services (ODS). Client applications are untrusted when they are executing at
the request of an authenticated user who is not a SQL Server administrator, and they are running from an
account without special Windows NT permissions. If any untrusted client software fails while making a
SQL Server request, the client application may not provide anticipated results, but security cannot be
violated. Since the network connecting the client and the server is a closed network supported by
previously evaluated components, the connection between the client and the server istrusted; therefore the
untrusted TCB interfaceis ODS running in SQL Server. It providesthe only interface into SQL Server.

The administrative interface into the TCB is via the administrative tools that run on the client, because they
must work correctly to maintain the security policy established for SQL Server. Since the administrative
interface is a client interface, communication software between administrative client tools and the server
are part of the TCB. This software includes ODBC Library routines to support the administrator tools:
SQL Enterprise Manager, Query Analyzer, and Client Network Utility; Net-Librariesin both the client and
the server; and the TDS protocol.

Figure 2-2 TCB Interface identifies the flow of client requests into SQL Server including the untrusted user
interface as well as the administrative TCB interface. Windows NT Transport Driver Interface (TDI) and
socket API (Winsock) are required to connect clients, running the SQL Server ODBC driver to the server
on which SQL Server resides. The Named Pipes and Multi-protocol Net-library DLL s both support
multiple network protocols (NW Link IPX/SPX, NetBEUI, and TCP/IP), however only TCP/IPis
supported in the evaluated product.

OTHER SQL SERVER COMPONENTS
OPEN DATA SERVICES

s
*

I NET-LIB REMOVED TDS WRAPPER I

UNTRUSTED INTERFACE

WINDOWS NT IPC MECHANISM (NAMED PIPE, SOCKETS)

CLIENT-SIDE

PHYSICAL
NETWORK

INEI’-LIBRARY ENCAPSULATES TDSI

(T

ODBC API

ADMINISTRATOR

TooL ‘_|_ TRUSTED INTERFACE

Figure2-2 TCB Interface

2.2.1 Untrusted I nterface

This section describes the untrusted user interface. It first describes ODS and then discusses Net-lib and
TDS. Net-Lib and TDS are not the untrusted interface but their descriptions are necessary to understand
how clientsinteract with SQL Server.

2211 OoDS

Untrusted clients connect into the server through an interface called Open Data Services (ODS). ODS
provides a well-defined interface between server Net-Libs and server-based applications. It exports an
interface consisting of function calls and macros used to develop ODS Server applications.

When requesting server services through ODS, client applications identify specific request events (e.g.
login event, language event, attention event). These event types are trandated into packet types and
communicated to the server. Within the server, ODS recognizes these packet types and trandlates them back
into events, whereby ODS calls a specific event handler. Thistype of client/server interfaceis not limited
to the implementation of SQL Server, however SQL Server isimplemented as an ODS application which
means that SQL Server follows the client/server paradigm provided by ODS. This process is reversed when
results are returned to the client.

Communications between SQL Server and its clients through ODS follow this sequence:

1. Theserver Net-Library receives TDS packets from the client.
2. Theserver Net-Library passes all packets directly to ODS.

3. ODSdeterminesthe type of request. If the request isto login or to open a database, ODS creates a
SRV_PROC structure *and establishes a connection.

4. Requests coming from the client to the SQL Server and associated results are communicated over
the established connection.

Every TDS protocol packet has an event identifier. For all TDS packets, ODS trandates the TDS packet
identifier into an event_type that it passes, using a callback interface, to server applications called an event
handlers. Event handlers then use callback functions to send replies back through ODSto the client. Each
type of packet mapsto one event_type. All events are either server-level events or user-level events. The
event types are briefly described in the following table.

EVENT TYPE DESCRIPTION
ATTENTION ﬁr g||<| :r?t sends an interrupt request, or the network connection to the client is
CONNECT A client sends a connect request.

A client sends a disconnect request, or SQL Server calls an internal function
DISCONNECT to initiate a request to disconnect the current client thread.

EXIT ODS cdlls afunction to initiate a request for immediate shutdown.

A client sends a SQL Server language request. These requests manipulate
database objects such as database, tables, view, and stored procedures. The
LANGUAGE language event is also used to load/unload large quantities of data into/out of
databases. There are extended TSQL commands that invoke Windows NT
directly, but those commands are restricted to administrative access.

RESTART ODScalsaSQL Server function to continue a paused SQL Server.
SLEEP ODScalsaSQL Server function to pause a started SQL Server.
START ODS callsa SQL Server function to initiate the server.

ODScalsaSQL Server function to initiate a request to terminate all client

STOP threads and then shut down.

Table 2-1 ODS Supported Events

Server-level events (i.e. exit, start, stop, deep, and restart) are restricted to administrators. Each server-level
event has an individual event_handler to handle the specific request with a call to a specific function that is
protected by the DAC policy, since each server-level event_handler first checksto seeif the user isthe
administrator (sysadmin). All other events are handled by a user-level event handler (attention, connect,
disconnect, language, login, logout).

To deal with simultaneous client requests, ODS creates a separate execution domain for each connection.
When ODS receives alogin or open database request, a separate connection is created by first allocating a
separate thread for execution, then allocating a separate areain memory used for the process state,
transaction descriptors, session descriptors, protection cache, login record, and parser work area. A
separate SRV_PROC structure is created to contain connection information for each new client connection,
and finally UMS s called and given a SRV_PROC pointer. When UMS returns, a per-session state
associated with a specific connection has been established.

A new connection/session” is created for every Windows NT user running a specific application, from an
individual host, over a specific port. A single user may have multiple concurrent connections active, but not
from the same host, running the same port.

® Thereis one SRV_PROC structure per connection
* Connection and session are synonymous

Table 2-2 SRV_PROC Structure identifies the information maintained in the SRV_PROC structure for

each connection.

SRV_APPLNAME

The application name supplied by the client when it logged in to the Open
Data Services server application.

SRV_BCPFLAG

A flag that is TRUE if the client is preparing for a bulk copy operation,
otherwise FALSE.

SRV_CLIB The name of the library that enables the client to talk to a server.

SRV_CPID The client process ID on the client’s source computer.

SRV_EVENT The current event for srvproc.

SRV HOST The host name used_ by the srvproc_clie_nt application when it logged in to
- the Open Data Services server application.

SRV_LIBVERS The version of the client library.

SRV_NETWORK_MODULE

The name of the Net-Library DLL used for the current srvproc connection.

SRV_NETWORK_VERSION

The version of the Net-Library DLL used for the current srvproc
connection.

SRV_NETWORK_CONNECTION

The connection string passed to the Net-Library DLL used for the current
Srvproc connection.

SRV_PIPEHANDLE

A string containing the pipe handle of a connected client, or NULL if the
client is connected on a network that does not use named pipes.

SRV_RMTSERVER

The server from which the client processislogged in. If theloginisfrom &
client, this value is an empty string.

SRV_ROWSENT

'The number of rows already sent by srvproc for the current set of results.

SRV_SPID The server thread ID of the srvproc.
SRV_SPROC_CODEPAGE Codepage that the server uses to interpret multi-byte data.
SRV_STATUS The current status of srvproc.
SRV_TDS The version of the tabular data stream (TDS) used by the client
The connection type of srvproc. If “server” isreturned, srvproc is from a
SRV_TYPE SQL Server. If “client” is returned, srvproc isfrom a DB-Library or
ODBC client.
SRV USER The username used _by the srvproc c_:Iient application when it logged in to
- the Open Data Services server application.
Table 2-2 SRV_PROC Structure
2212 Net-Lib

The Net-Lib architecture provides a method of sending TDS packets via an IPC mechanism across a
physical network connection. Three Net-Libs are supported in the evaluated configuration, TCP/IP Sockets,
named pipes, and multi-protocol. Multi-protocol Net-lib supports TCP/IP Sockets and named pipes. Net-
Libs areimplemented as DLLs, and multiple Net-Libs can be loaded simultaneously. A matching pair of
Net-Libs must be active on the Windows NT client and server to support the desired network protocol.

The primary purpose of Net Lib isto manage user connections and interface with Windows NT. Net Libis
a connection management utility. It maintains the Windows NT handles for accessing the sockets
associated with user connections. Net Lib performs no buffering of data. It does not understand the TDS
protocol. It simply receives packets from Windows NT, removes the TCP/IP wrapper and forwards them
to SQL Server. Any reassembly that may be necessary is handled by ODS. Similarly, when sending

traffic, Net Lib adds a TCP/IP wrapper and forwards the packets to Windows NT.

Net Lib handles al connections for SQL Server. When Net Lib receives a connection from Windows NT,
it puts the handle associated with the connection in an internal structure. The handle isfor a socket pair that

10

uniquely identifies a connection and is managed by the Windows NT kernel (see the Windows NT 4.0
Service Pack 6a Final Evaluation Report for a description of handles and sockets). Net Lib passesa
pointer to the handle to SQL Server. The pointer is passed viaafunction call (Connect i onAccept)
between Net Lib and SQL Server. SQL Server stores this handle in the SRV_PROC structure associated
with the connection. Whenever SQL Server sends and receives data it includes the pointer into the Net Lib
structure that manages user connections. Net Lib uses the referenced handle when sending data over a
socket; thus ensuring the separation of connections.

2213 TDS Protocol

Tabular Data Stream (TDS) is a message oriented application level protocol used for the transfer of
requests and responses between client applications and SQL Server. Requests and responses are
communicated through TDS packets. TDS packets are built by the client and then passed to a client Net-
Library, which encapsulates the TDS packets into TCP/IP protocol packets. On the server, a server Net-
Library that extracts the TDS packet and passesit to ODS receives the network protocol packets. The
remainder of this section discusses the details of the TDS protocol.

At the client side interface, TDS data is one of the following ODS event formats:

» Login record (connect event);

e TSQL command (language event);

e TSQL command followed by its associated binary data (e.g., the data for a bulk copy command —
language event);

e Attention signal (attention event); or

e Logout (disconnect event).

To send a TSQL command, or batch of TSQL commands, the TSQL command, represented by an ASCI|
string, is simply copied into the data section of a buffer and then sent to the SQL Server. A TSQL batch
may span more than one buffer.

The client can interrupt and cancel the current command by sending an attention signal. Once the client
sends an attention signal, the client reads until it gets an attention acknowledgment.

To send alogout request from the client, either the user enters LOGOUT at the command line or the
application executes a disconnect. Both are received by ODS as a disconnect request and ODS callsthe
logout event handler.

2.2.2 Trusted I nterface

The trusted user interface is composed of three portions: ODBC, Net-Lib, and TDS. Open Database
Connectivity (ODBC) isthe interface used by SQL Enterprise Manager, Query Analyzer, Profiler, and
Client Network Utility running in aWindows NT client to administer SQL Server. ODBC isaCall-Level
Interface (CLI) that allows these tools to access data from ODBC data sources, which for SQL Server is
ODS. A CLI isan API consisting of functions administrative tools call to obtain a set of services.

The ODBC architecture four functional components are described in Table 2-3 ODBC Functional
Components below.

COMPONENT FUNCTION

Calls ODBC functions to communicate with an ODBC data
source, submits SQL statements, and processes result sets.
Manages communication between the client application and the
SQL Server ODBC driver.

Processes all ODBC function calls from the application,
connectsto SQL Server, passes SQL statements from the

Application

Driver Manager

Driver

11

application to SQL Server, and returns results to the client
application.

Provides an API that presents all information a driver needs to
access a specific instance of datain SQL Server.

SQL Server ODS

Table 2-3 ODBC Functional Components

Administrative tools (trusted client applications) use an ODBC driver to access SQL Server data. The flow
from a client application request to an event handler in the relational engine of SQL Server is briefly
described. First, the trusted client application makes callsto the ODBC API using SQL statements written
in either ODBC SQL syntax or SQL Server TSQL syntax (e.g., DBCC commands).

The client ODBC driver manager provides a standard driver interface for applications while allowing for
driver changes. The driver manager primarily loads the modules comprising the driver and then passes all
ODBC requests to the driver.

The SQL Server ODBC driver responds to al calls the application makes to the ODBC API. If the TSQL
statements from the application contain ANSI or ODBC SQL syntax that is not supported by SQL Server,
the driver translates the statements into TSQL syntax and then passes the statement to the server. The driver
also presents al results back to the application. The driver communicates with the server through the SQL
Server Net-Libs using the TDS protocol.

2.3 System Tablesand Databases

The information used by SQL Server and its componentsis stored in special tables known as system tables.
These tables are stored in system databases. The following sections describe the tables and databases.

2.3.1 System Tables

Successful operation of SQL Server depends on the integrity of information in the system tables. Direct
updating, deleting, or inserting datain a system table can cause unpredictable effects. Therefore, the
Trusted Facility Manual (TFM) instructs the administrator to prohibit direct updates to these tables.

System tables are protected from modification by DAC. They are stored under the MSSQL directory, to
which unprivileged users do not have write access. Also, Microsoft does not support triggers defined on the
system tables.

Only SQL Server modifies the system tables in response to issued commands issued. Applications use the
following components to retrieve information stored in the system tables:

e Information schemaviews,

e Stored procedures;

e TSQL statements and functions; and

« Database application programming interfaces (API) catalog functions.

System tables fall into two categories: those that contain global information and those that contain
information specific to a single database within the server. The following are general descriptions of the
contents of those tables. More detail isavailable in Appendix B on page 72. The descriptionsin that
Appendix are broken down into seven tables:

e Table B-1 Master Database Tables describes server-level system information tables that exist only in
themast er database;

e TableB-2 SQL Server Agent Tables describes server agent tables that exist only inthe nsdb
Database;

e Table B-3 Database Backup and Restore Tables describes database backup and restore tables that exist
only in the msdb database;

* TableB-4 Replication Tablesin Master Database describes replication related tables that exist only in
themast er database;

12

e Table B-5 Replication Tablesin Distribution Database describes replication tables that reside in the
distribution database;
e Table B-6 Database System Tables describes database system tables that reside within every database;

and

* TableB-7 Replication Tablesin User’ s Database describes replication tables that reside within the
user's database.

Some system tables are global across a SQL Server installation and some are local to a database created
under SQL Server. Table 2-4 Global SQL Server System Tables and Table 2-5 Database Loca System
Tablesindicate the global or local placement of the system tables. Details are not provided for each system
table. As each table is referenced in the report, it is described in context.

In general, the Global System Tables are of the following types:

* Master Database Tables storing server-level system information.

* Server Agent Tablesin the msdb database containing data used by SQL server agents. Agents perform
functions associated with replication and routine administrative functions, such as backup/restore.

» Database Backup and Restore Tables that are stored in the msdb database. These tables store
information used by database backup and restore operations.

e Tablesused by replication that are stored in the master database, the distribution database, and the
user’s database.

Database Local System Tables consist of metadata describing the objectsin a SQL Server database and are
stored in every database.

sysdltfiles sysjabhistory sysdatabases Mspublication_access
syscacheobjects | sysobs Sysobjects Mspublications
syscharsets sysjobschedules syspublications Mspublisher_databases
sysconfigures sy observers sysreplicationalerts Msreplication_objects
syscurconfigs sysobsteps sysservers Msreplication_subscriptio
ns

sysdatabases sysnotifications syssubscriptions M Srepl_commands
sysdevices sysoperators M Sagent_parameters MSrepl_errors
syslanguages systargetservergroupmembers | MSagent_profiles Msrepl_originators
syslockinfo systargetservergroups Msarticles M Srepl_transactions
sysogins systargetservers Msdistpublishers MSrepl_version
sysmessages systaskids M sdistributiondbs Mssnapshot_agents
sysoledbusers backupfile Msdistribution_agents M ssnapshot_history
sysperfinfo backupmediafamily Msdistribution_history Mssubscriber_info
Sysprocesses backupmediaset M sdistributor Mssubscriber _schedule
sysremotelogins | backupset Msdlogreader_agents M ssubscriptions
sysservers restorefile Msdogreader_history M ssubscription_properties
sysalerts restorefilegroup MSmerge agents
syscategories restorehistory MSmerge_history
sysdownloadlist | sysarticles MSmerge subscriptions

Table 2-4 Global SQL Server System Tables
sysallocations Sysindexkeys MSmerge genhistory
syscolumns Sysmembers MSmerge replinfo
syscomments Sysobjects MSmerge tombstone
sysconstraints Syspermissions sysarticleupdates
sysdepends sysprotects sysmergearticles
sysfilegroups sysreferences sysmergepublications

13

sysfiles systypes sysmergeschemachange
sysforeignkeys Sysusers sysmergesubscriptions
sysfulltextcatal ogs MSmerge_contents sysmergesubsetfilters
sysindexes MSmerge delete conflicts

Table 2-5 Database L ocal System Tables

2.3.2 System Databases

A SQL Server system contains four system databases, as described in Table 2-6 System Databases. These
databases are used to maintain system information and temporary storage.

SYSTEM DATABASE

DESCRIPTION

mast er

Themast er database contains information on
login accounts, system configuration settings, the
existence of other databases, and initialization
information for user databases and for SQL Server
itself.

t enpdb

Thet enpdb database provides server global
temporary storage for temporary tables, stored
procedures, and system worktables. . Thet enpdb
isaccessibleto all usersasascratch area. Itis
treated as any other database except that it does not
persist from one SQL Server session to another.

nodel

Thenodel databaseisused asaninitiaization
template for all databases created by SQL Server.

nsdb

The nsdb database supports SQL Server Agent in
scheduling alerts and jobs, and in recording
operators.

Table 2-6 System Databases

14

15

3 Composite Trusted Computing Base

The composite Trusted Computing Base (TCB) includes the SQL Server and the Windows NT 4.0
Operating System with Service Pack 6a and C2 Update. The evaluated configuration is one or more
instantiations of SQL Server running in a client-server environment on any number of Windows NT
Servers or Workstations. SQL Server relies on the operating system to enforce its security policy and to
provide SQL Server with services and resources to implement the DBM S and its objects. Figure 3-1
Composite TCB illustrates the relationship of the operating system to the DBMS. The remainder of this
chapter provides an overview of SQL Server database-specific terminology and describes the security
policy and architecture of the composite TCB. Additional information about the Windows NT operating
system can be found in the Windows NT 4.0 with Service Pack 6aand C2 Update Final Evaluation Report.

UNTRUSTED SOFTWARE

SQL SERVER
AGENT

SQL SERVER

TRUSTED WINDOWS NT OS

Figure 3-1 Composite TCB

3.1 Server Database Management System Concepts

SQL Server isarelational database management system (DBMS). The DBMSisresponsible for enforcing
the database structure, including:

e Maintaining the relationships between data in the database;
e Ensuring that datais stored correctly, and that the rules defining data relationships are not violated; and
¢ Recovering all datato a point of known consistency in case of system failures.

In arelational database, datais collected into tables that represent classes of objects that are important to an
organization. Each table comprises columns and rows. Each column represents some attribute of the
object represented by the table. Each row represents an instance of the object. Valuesin tables can be
interpreted as pointing to like values in the columns of other tables, thus providing linkages among tables.
When organizing data into tables there are many different ways to define the contents of atable. Relational
database theory defines a process, normalization, that ensures that the set of tables defined will organize
data efficiently and effectively.

Tables have properties that are an important part of the support for ensuring the integrity of datain a
database. Dataintegrity refersto each occurrence of a column having a correct datavalue. The data values
must be of the right data type and one of the allowable values.

The concept of referential integrity indicates that the relationships between tables must be properly

maintained. Data in one table should only point to existing rows in another table; it should not point to rows
that do not exist. Objects used to maintain both data and referential integrity include:

16

¢ Constraints;

* Rules;
» Defaults; and
e Triggers.

Constraints define rules regarding the values allowed in columns and are the standard mechanism for
enforcing integrity. Rules specify acceptable values for a column. Rules are created separately from
columns and can be bound to one or more columns. Defaults specify what values are used in acolumn if a
value for the column is not specified when inserting arow. A stored procedureis agroup of TSQL
statements compiled into a single execution plan. Triggers are a special class of stored procedure defined
to execute automatically when an UPDATE, INSERT, or DELETE statement is issued against a table.

To work with datawithin SQL Server, usersissue a set of commands and language statements compatible
with the DBMS software. The language used by SQL Server is Transact-SQL (TSQL), which supports
standard SQL. Both the American Nationa Standards Institute (ANSI) and the International Standards
Organization (1SO) have defined standards for SQL. SQL Server supportsthe Entry Level of SQL-92, the
latest SQL standard (published in 1992).

3.2 Composite Trusted Computing Base Security Policy

The composite TCB enforces a single security policy that restricts users from accessing information for
which they have not been granted authorization. Information in the TCB is stored in objects. Accessto
information contained in these objects is mediated by the composite TCB in response to each subject’s
request. Subjectsin the Windows NT OS and in SQL Server are Windows NT processes. Subjects and
objects are discussed in more detail in Chapter 5 on page 42. SQL Server uses the following Windows NT
DLLswhen interacting with the operating system:

« KERNEL32;
« ADVAPI3Z;
e RPCRT4;

e OLE32; and
« VERSION.

The SQL Server Discretionary Access Control (DAC) policy augments the OS DAC policy to apply to
SQL Server DBM S objects. The SQL Server associates an Access Control List (ACL) with each object
and performs mediation based on ACL entries. Identification and authentication are provided by the
Windows NT Operating System. A user must logon to the OS prior to connecting to SQL Server. There
are two sets of administrative rolesin SQL Server, server roles and fixed database roles. SQL server roles
are discussed in detail in Section 5.3 SQL Server Roles on page 45.

3.3 Composite TCB Architecture

The SQL Server runs on the C2 evaluated Windows NT OS with Service Pack 6aand C2 Update in the
evaluated configuration. SQL Server depends on the OS to function correctly and provide an underlying
architecture to protect database objects and support system functions. SQL Server consists of two trusted
services, SQL Server and SQL Server Agent. SQL Server contains the main DBM S executable to perform
database and security functions. SQL Server Agent runs as a separate executable to execute jobs. SQL
Server Agent is discussed in more detail in Section 4.5 SQL Server Agent on page 37.

3.3.1 Operating System Privileges

The SQL Server runs as a service Windows NT platform. The service account under which SQL Server
runs must have four operating system privilegesin order to perform security-relevant functions. Those
privileges are:

e AssignPrimaryTokenPrivilege;

17

¢ IncreaseQuotaPrivilege;
e TchPrivilege, and
e ServiceLogonRight.

There are two reasons for the use of privilege by the SQL Server. The SQL Server Agent is a separate
process that must perform alogin into SQL Server. In order to perform alogin, the SQL Server Agent must
make some Windows NT calls that require privileges. The second reason for requiring a privilegeisin
order to run as a service on Windows NT. Thisrequires aspecia logon right. The details of the privilege
uses are provided in the list below.

1. AssignPrimaryToken - the SQL Server Agent uses this privilege when establishing the user context for
SQL Server Agent logon. The SQL Server Agent must call the CreateProcessAsUser Windows NT
call.

2. IncreaseQuota - the SQL Server Agent uses this privilege when establishing the user context for SQL
Server Agent logon. The SQL Server Agent must call the CreateProcessAsUser Windows NT call.

3. Tcb- SQL Server usesthis privilege as part of SQL Server Agent logon. The SQL Server Agent must
call the LogonUser Windows NT call.

4. ServiceLogonRight - This privilegeisused to run the SQL Server Service.

3.3.2 SQL Server Communications

SQL Server can either listen on a named pipe or asocket. If it listens on a named pipe, Windows NT DAC
protects the named pipe so that only SQL Server can access the private pipe. When SQL Server listenson a
socket, there must be no untrusted programs running on the same Windows NT Server or Workstation.
Thisrestriction is necessary since Windows NT does not permit non-administrative users to bind to sockets
exclusively. Thisrestriction ensures SQL Server communications are protected. By default, SQL Server
listens on port 1433

3.4 WindowsNT Security Terminology

Through this report, reference will be made to specific Windows NT security terms. This section
introduces those terms that are used in the report.

A domainisalogical grouping of network servers and other computers that share common security and
user account information. The domain account information is defined on aWindows NT Server configured
as aPrimary Domain Controller (PDC). A Backup Domain Controller (BDC) contains a copy of the
account information maintained on the PDC.

Windows NT Server Directory Services provide security across multiple domains through trust
relationships. Trust relationships are established between domains so that they may share account
information in order to set ACL s on resources.

In Windows NT, users and groups of users are represented by accounts. Windows NT supports three types
of user accounts:

e User Account: Represents asingle, human user. Information included within a user account includes
user name, full name, description, password, logon hours, logon workstations, expiration date, home
directory, profile, associated groups, account type, and account condition (e.g. disabled and password
never expires);

» Global Group Account: Represents alist of user accounts grouped together under one account name.
This type of account can only be created on adomain controller. It can only contain global user
accounts from the same domain. It cannot contain local user accounts or global group accounts from
the same domain or other domains; and

18

Local Group Account: Represents alist of user or global group accounts from one or more domains
grouped together under one account name. It can contain local user accounts, global user accounts
from the same domain or trusted domains, and global group accounts from the same domain or trusted

domain. It cannot contain other local group accounts.

Each account created for any of the three user account types has a unique identifier called a Security
Identifier (SID). A SID representing a user account is used for access control and other security functions.

19

4 System Architecture

This chapter describes the architecture of the SQL Server. It first discusses SQL Server’s memory and task
management, followed by a discussion its storage and relational engines. The chapter concludes with
descriptions of backup and restore, SQL Server Agent, system startup, and administrator tools.

4.1 Memory M anagement

The SQL Server address space is divided into two distinct logical memory portions. The first isfor its
executable code. This executable code includes the SQL Server executable as well as network libraries and
connection management code. The second portion of the address space is available memory for SQL
Server processing of user requests. Memory management in SQL Server occurs using a memory pools.
The memory pools provide memory resources to those portions of the SQL Server requesting memory.

The memory pools can be divided into five categories:

Buffer pool;

System data structures,
Connection context information;
Procedure cache; and

Logging caches.

agrwNE

Thefirst and largest category is the buffer pool. The buffer pool is used by the storage engine to store data
that has been read from and written to disk. When the storage engine receives a request to access data, the
buffer manager checksits pool to determineif it already has the datain memory. If it does not, the buffer
manager makes a call to the OS to get the data; however, if the dataisin memory, the buffer manager can
simply return the datato the caller. In determining when a buffer can be reused, SQL Server usesa
lazywriter. The lazywriter is aworker thread making continuous sweeps through all the buffersin memory.
This worker thread marks as reusable any pages not in use that have not been touched since the last sweep.

The next category of memory is system data structures. These structures are used to hold global
information about the SQL Server such as locks and database descriptors. A similar category of memory
contains client connection context information. Each connection context contains information about the
user context, open objects, parameters for stored procedures and RPC, and cursor positioning information.
Clients do not have an interface to directly access their associated memory. Both of these categories are
allocated from the SQL Server r esour ce structure. Ther esour ce structure isaglobal structure from
which all other system data structures are allocated. Throughout the discussion of the SQL Server
architecture, descriptions are provided of memory structuresthat are al allocated fromther esour ce
structure.

The procedure cache is the next category of memory. The procedure cacheis used to store compiled
execution plans. When the compiler receives arequest, it first checks the procedure cache to determineif a
compiled plan aready exists. This savesthe SQL Server effort in producing compiled plans. More detail
about the procedure cache can be found in Section 4.4.2.3 Procedure Cache on page 35.

A set of cachesfor logging isthe last category in the memory pool. Database transaction log pages, used to

maintain database consistency, are stored in a separate set of caches from the buffer pool. Figure 4-1 SQL
Server Address Space shows the allocation of memory within the SQL Server.

20

SQL SERVER ADDRESS
| SERVER NET-LIBRARY DLLS |

| OPEN DATA SERVICES CODE |

SQL SERVER CODE

MEMORY POOL
SYSTEM DATA STRUCTURES

PROCEDURE CACHE

BUFFER POOL

LOG CACHE
CONNECTION CONTEXT

Figure 4-1 SQL Server Address Space

4.2 Task Management

SQL Server provides support for task management through the User Mode Scheduling (UMS) component.
UMSisresponsible for user and SQL Server system task scheduling and synchronization. This section
describes the functionality and data structures for UMSin SQL Server.

4.2.1 Task Scheduling

UMS performs task management by managing a set of Windows NT process structures known as threads
and fibers. In addition to managing Windows NT threads to represent processes, UM S can also be
configured to manage Windows NT fibers. Fibersare Windows NT thread constructs that are manipulated
viaaset of Win32 APIs. Each thread can have multiple fibers. Fibers are subsets of threads contained
within athread object. They are scheduled by server applications without visibility to the operating system.
Threads are allocated CPU time based on their thread priority, where fibers are not allocated CPU time by
the system at all. Instead, the SQL Server application isresponsible for scheduling fibersto run. A
scheduled fiber runs only if the thread in which it is contained is scheduled to run. SQL Server operatesin
either fiber mode or thread mode, but not both simultaneously. Whether threads or fibers are used in
scheduling is fixed for each running instance of SQL Server. Either thread or fiber process modeis
effective until the server isrestarted. The SQL Server configuration lightweight pooling option controls
whether SQL Server uses threads or fibers and isrepresented in ther esour ce data structure.

SQL Server thus maintains a pool of worker threads or fibersto perform task management. Threads or
fibers and their associated data structures are used to represent user connections. SQL Server defaultsto
schedule athread per concurrent user ODS event.

SQL server uses Windows NT threads or fibers to execute concurrent tasks on behalf of SQL server users
and server system processes. UMS s responsible for creating one UMS Scheduler object (thread) for each
CPU. If multiple schedulers are created, they run completely independently of each other. In fiber mode,
UMS dlocates one thread per CPU, then allocates afiber per concurrent user command, up to the max
worker threads server configuration option. In thread mode, UM S alocates threads from the worker pool
of free threads. UMS uses the same agorithms to schedule and synchronize tasks when using either
threads or fibers. Each user and SQL Server task has an associated data structure to store the thread/fiber
user context.

UMS performs the following task management functionsin SQL Server:

21

¢ Allocate Scheduler — Creates a new schedule and adds it to the system global list. Schedulesrunin
fiber or thread mode;

» Delete Schedule — Waits for all users associated with scheduler to exit, then removes scheduler from
global list and deletes structures;

e CreateUser (Thread/fiber) —Creates user structure and associates with a scheduler;

o Exit User (Thread/fiber) — Terminates user thread/fiber and releases associated data structures. Before
terminating, the next user is chosen and account information is updated for the appropriate scheduler;

e Convert Thread — Converts currently running thread into UM S user including allocating context data
structures and assigning a scheduler. Used during startup to move existing threads under UMS control.

e Suspend - Saves context for user and switches to next runnable user;

¢ Resume — Places a suspended user back on runnable queue for execution. User is placed in aready
state and continues execution based on previous context save point (saved through Suspend);

» Switch Preemptive — Moves user from non-preemptive to preemptive environment. Transfers control
to NT thread outside of UMS contral;

* Switch Non-Preemptive — Moves users back from preemptive to UM S non-preemptive environment.

« Event and Timer functions— Support for synchronization;

e Input/Output (1/0) functions — Support for performing and tracking user 1/0 requests. 1/0 cannot be
performed the traditional way in the UM S environment because waiting for a synchronous transfer to
complete would put the entire UM S environment to sleep. For this reason UM S provides functions to
perform and track the I/O requests issued on behalf of users. All 1/O processing and tracking is
through the user’s current scheduler. The UMS 1/O mechanism allows one to issue any number of
asynchronous I/Os, and then receive notice of their completion through compl etion routines; and

* Work Queue functions — Support for scheduler queues.

4.2.2 Task Execution

Each scheduler has an associated work queue for new requests. As new work arrives, the network thread
places the requests on the appropriate scheduler’ s work queue based on where the UM S user is running.
The work queues are populated from the working pool up to the specified limits as demand increases. If no
idle workers are available as work enters the server, new workers are created to handle the load. Windows
NT schedules threads/fibers for execution based on a numeric priority. UMS does not preempt running
threads/fibers. A thread/fiber that does not voluntarily yield keeps processing. The time dlice configuration
option is used to prevent alooping thread/fiber from processing forever. Time slice defines how many
milliseconds a process can execute without yielding. If athread/fiber reaches the time slice value, UMS
assumesit is stuck in aloop and terminates the task.

Each task has one of the following mutually exclusive associated states:

* Running — current task on scheduler;

e Suspended - waiting for resource or event;
e Waiting - Ready to Run; and

e Terminating.

UMS maintains a queue for waiting tasks ready to run. Other states are kept in data structures associated

with the scheduler and the user task. Figure 4-2 Task State Transitions depicts the allowable state
transitions.

22

FREE LIST
OF WORKER
THREAD/FIBERS

IR

~ | —

Figure 4-2 Task State Transitions

43 Storage Engine

The storage engine of the SQL Server controls access to system resources. It does not perform any access
checks; rather it retrieves data for the relational engine. The storage engine's main functions are:

e Managing SQL Server dataon disk;

e Transaction management;

e Locking;

¢ Replication;

e Logging and recovery; and

« Implementing utility functions such as the backup and restore.

Figure 4-4 Storage Engine shows the components of the storage engine. This section describes all the
functions of the storage engine.

ACCESS . TRANSACTION
METHODS MANAGER
REPLICATION
PAGE MANAGER AGENTS

LOG MANAGER

BUFFER MANAGER

Figure 4-4 Storage Engine

23

4.3.1 Disk Management

SQL Server isresponsible for managing its own dataon disk. It storesal of its datain operating system
files. Each databaseis stored in two or more files, with at least one for data and one for transaction log
information. Data and transaction log information cannot reside in the same file and individual files can
only contain information from one database. This section describes the disk management structures used
by SQL Server to manage its data. It discusses files and file management, followed by a discussion of
space management within the SQL Server.

4311 Files and Filegroups

SQL Server uses operating system filesto maintain its data. Those files can be grouped together into sets
called filegroups for ease of allocation and administration. This section describes how SQL Server uses
both files and filegroups.

43111 Files

SQL Server isresponsible for managing its files within Windows NT. Database files can be configured to
grow automatically by user defined increments or can be statically sized. The SQL Server has three types
of filesit manages:

1. Primary — Thefirst file of a database; it contains the starting location of al system tables associated
with the database;

2. Secondary — These are al the data files for a database, excluding the primary file; and

3. Log-Thelog files contain the transaction log information needed to recover the database. Thereisa
minimum of one file per database.

Thefirst SQL Server page within each file is afile header page containing information about the attributes
of the file. The ninth page in a primary data file is a database boot page containing information about the
attributes of the database. Each file hasaunique ID. Pagesin afile are numbered sequentially starting at 0
for the first page in afile. Identifying a page within afile requiresthefile ID and page number. If a
database only has two files, then it has a primary and log file.

Information about databases and their associated filesis stored in two places. Thesysdat abases
system table in the master database contains one row for each database. Each entry contains the path for
the primary file of adatabase. Within the primary file of a database thereisasysf i | es tablethat has
information about al the data and transaction log information that belongs to the database (i.e., associated
files and filegroups).

43.1.1.2 Filegroups

Database files can be grouped together into filegroups. Filegroups are a named collection of one or more
filesthat form aunit of alocation and administration. Files can only be a member of one filegroup. All
datafiles can be part of afilegroup; however, log files cannot belong to afilegroup.

There are three types of filegroups:

1. Primary - The primary filegroup contains the primary data file and any other files not put into another
filegroup. All pages for the system tables are alocated in the primary filegroup;

2. User-defined — User filegroups are those defined by a user at database creation or alteration; and

3. Default - The default filegroup contains the pages for all tables and indexes that do not have a
filegroup specified when they are created. In each database, only one filegroup at a time can be the
default filegroup. The primary filegroup is the default filegroup unless the user specifies otherwise.

Figure 4-5 Database Filegroups shows an example database that uses one primary filegroup and a
secondary filegroup that contains two files. Note that filegroups may be stored on different drives. The
SysFi | eGr oups system table contains a description for al the filegroupsin a database. Thereisat least
one entry in this table for the default filegroup.

24

" DATABASE)

w
| PRIMARY DATA FILE C:\MSSQL\DATAVFILE1 |
| SECONDARY FILE D:MSSQL\DATAFILE2 |
| SECONDARY FILE D:\MSSQL\DATA\FILE3 |
| LOGFILE D:MSSQL\DATA\LOG |

v

Figure 4-5 Database Filegroups
4312 Page Management

The basic unit of data storage in the SQL Server isapage, which is 8K in size. When a database needs
additional space, an extent is allocated. An extent iseight pages. Figure 4-6 Page Structure shows the
layout of apage. The page header is 96 bytes describing the page. The header is followed by the body,
which is populated with rows. The rows themselves contain system and user data. The slot array consists

of entries that point to starting positions of rows on the page. The slot array begins at the end of the page
and grows backward.

HEADER

BODY

SLOT ARRAY

Figure 4-6 Page Structure

The page header is 96 bytes and contains two sections. The first section contains information about the
page itself, including the page number, page type, and which object is associated with the page. Pages are
either associated with tables or indexes. The second section contains information about the data including
number of rows, amount of used space, and end of data. Rows within the body of a page contain a header
and data. The header is used to specify the type of datain the row, e.g., variable length, index, ghost. The
dlot array is used to find rows within the page. Whenever arow is added to a page, an entry is added to the
dlot array specifying the index of the row within the page.

Rows are added to the end a page. Asrows are deleted, space becomes available at the beginning of a page.

To reclaim this space, SQL Server compactsthe page. When arow isdeleted it is marked as a ghost row.
This means the row is no longer available to users but has not been cleared from the page. A background

25

process runs and clears ghost rows from pages. After the ghost rows have been cleared (i.e., zeroed), the
remaining rows are compacted at the beginning of the page and the slot array is updated. Rows can also
be cleared upon an insertion. If contiguous space is not available upon insertion, the page will be
compacted and rows can then be inserted at the end of the page.

4313 Page Allocation

The Space Manager is responsible for managing pages within the SQL Server. Space management occurs
on afile by file basis with each file's space management data structures being completely self-contained
within agivenfile. Free spaceis managed in the following four ways:

1. Globa Allocation Map (GAM) — GAM pages record the free uniform extents within a set of pages.
Pages in a uniform extent belong to asingle table or index;

2. Small Globa Allocation Map (SGAM) - SGAM pages track the free mixed extents within a set of
pages. Pagesin mixed extents are shared among tables or indexes,

3. Page Free Space (PFS) — A PFS page tracks the free space within a set of pages. The number of pages
managed by the PFS is a multiple of the extent size; and

4. Index Allocation Map (IAM) — These pages track extents used by a particular table or index.

The Space Manager has three subcomponents to control the type of pagesjust described. The three
subcomponents and the types of pages they manage are:

1. GAM Manager — manages GAM pages
2. SGAM Manager — manages SGAM pages, and
3. Page Manager — manages PFS and |AM pages.

This section describes each subcomponent and its role in page management.

43131 GAM Manager

The GAM Manager is responsible for managing uniform extents and GAM pages. GAM pages contain a
bitmap representing free extents within a given page range. GAM pages occur at the beginning of an extent
and are the first page of an extent unless a PFS page exists and then the GAM page is the second page. A
GAM page contains two records — one with header information such as size and number of extents, and the
second record with a bitmap with each bit representing an extent in the page range. If the bit for an extent is
s, the extent is available for alocation and visaversa. Every extent in the page range has a corresponding
bitin a GAM bitmap to represent its allocation state.

The Page Manager and SGAM Manager make requests to the GAM Manager to allocate or release an
extent. Reguests from the Page Manager are for auniform extent. Conversely, requests from the SGAM
Manager are for mixed extents. Thereisno interface to the GAM Manager for untrusted users.

During initialization of a GAM page, al of the bitsin the bitmap are set indicating that the entire range of
extents managed by this bitmap are free. When areguest is made for a free extent, the GAM pages are
scanned sequentially looking for bits that are set, the allocation islogged, the corresponding bit for the
extent is cleared in the GAM, and the extent id is returned to the caller with the extent locked. When a
reguest is made to free an allocated extent, the GAM page that manages that extent is computed, the GAM
page is brought into cache, the deallocation is logged and the corresponding bit for the extent is set.

43132 SGAM Manager

The SGAM Manager is responsible for managing mixed extents and SGAM pages. SGAM pages contain a
bitmap indicating which extents have free pages available for use in a mixed extent. These pages occur at
identical intervalsin the device as the GAM pages but occupy the second page in the extent as the GAM
page uses the first page. When the SGAM page falls on an extent that also has a PFS page, it occupies the
third page of the extent.

26

The SGAM structureisidentical to the GAM with the exception that its bitmaps represent extents that are
currently supporting single page allocations and which have free pages available. It isinitialized in the
same fashion as the GAM with the difference that all of the bitsin the bitmaps are cleared at device
initialization time, indicating that no extents are currently supporting single page allocations.

The SGAM Manager only receives requests from the Page Manager for the purposes of allocating a single
page. The SGAM Manager, in turn, callsthe GAM Manager when it needs to transition an extent from
uniform to mixed. Initialy, all extents are uniform. |f the SGAM Manager receives arequest for asingle
page, it must call the GAM Manager to obtain an available extent.

43.1.33 Page Manager

The Page Manager is responsible for managing free space within a page, page allocation and deallocations,
and extent allocations and deallocations. Additionaly, it isresponsible for managing PFS and IAM pages.
PFS pages record whether a page has been allocated and the amount of free space on the page. Each PFS
page maintains data for about 8,000 pages. After an extent has been allocated to an object, the Page
Manager uses the PFS pages to record which pages in the extent are allocated or free and how much free
space isavailable for use. Thisinformation is used when Page Manager has to allocate a new page, or when
it needs to find a page with free space available to hold a newly inserted row.

IAM pages map the extents in a database file to a given object. Objectsin the database are stored in either
tables or indexes; hence, IAM pages track table and index allocation. Each table or index has one or more
|AM pages recording all the extents allocated to the object. A table or index has at least one |AM for each
file on which it has extents. A table or index may have more than one IAM on afile if the range of the
extents for the table or index on the file exceeds the range that an IAM can record. By default, a mixed
extent is used for the first eight pages of atable.

An AM page has a header indicating the starting extent of the range of extents mapped by the lAM. The
IAM also has a bitmap in which each bit represents one extent allocated to the object. If abitisO, the
extent it representsis not allocated to the object owning the IAM. If the bit is 1, the extent it representsis
alocated to the object owning the IAM page.

When the Page Manager needs to insert a new row and no space is available in the current page, it usesthe
IAM and PFS pages to find a page with enough space to hold the row. The Page Manager uses the IAM
pages to find the extents allocated to the object. For each extent, the Page Manager searches the PFS pages
to seeif thereis a page with enough free space to hold therow. The Page Manager allocates a new extent
to an object only when it cannot find a page in an existing extent with enough space to hold the row being
inserted. When allocating an extent, the Page Manager calls the SGAM or GAM Manger to service the
request.

4.3.2 Access Methods

The Access Methods portion of the storage engine is responsible for the management of data and the
manipulation of database constructs while in memory. The Access Methods maintain several data
structures for managing database objectsin memory. These data structures are allocated from the
resour ce structure.

4.3.3 Transaction Management

A transaction is a sequence of operations performed asasingle logical unit of work. The unit of work may
be asingle SQL statement or a series of SQL statements, which begin with a START transaction statement
and continue through an END transaction statement. The logical unit of work must exhibit the following
four properties:

1. Atomicity - atransaction is an atomic unit of work; either all of its data modifications are performed, or
none of them are performed.

27

2. Consistency - when successfully completed, a transaction leaves al datain a consistent state and all
internal data structures, such as b-tree indexes or doubly linked lists, must be correct at the end of the
transaction. If unsuccessful, all of the data modifications made since the transaction started are undone.

3. Isolation - modifications made by concurrent transactions must be isolated from the modifications
made by any other concurrent transactions. A transaction either sees data in the state it was in before
another concurrent transaction modified it, or it sees the data after the second transaction has
completed, but it does not see an intermediate state.

4. Durability - after atransaction has completed, its effects are permanently in place in the system. The
modifications persist even in the event of a system failure.

4331 Transaction Logging

SQL Server stores changes to the database in transaction log files. These files are aset of OS log files
containing contiguous log records. New log records are appended to the end of the currently active log.
When the file becomes full, log recordsroll over to anew log file. Once al the log files are full, log files
are reused to store anew record. Log files belong to the SQL Server and are protected from unauthorized
access by Windows NT DAC security. Figure 4-8 Transaction Log Representation shows an example
transaction log.

LLF_lds 1-7

LLF5 \FILE 1. dat
[ArcHIVE

LLF6 \FILE 2. dat
. \FILE 3. dal ACTIVE

LOG
LLF 8 \FILE 4dat
LLF9 \FILE 5dat

Figure 4-8 Transaction L og Representation

Figure 4-8 Transaction Log Representation represents log files which were filled up once and are about to
befilled upasecondtime. \ fi | e4. dat isthe current file.

Since asingle file can contain multiple instances of the log, each instance of the log fileis called alogical
log file (LLF). A unique 4-byte number called LLF Identification (LLF_id) identifies the logical file. All
log records contained in\ fi | el. dat whenit wasfilled the first time around form LLF 1. Thelog
recordswhichfilled\ fi | el. dat the second time around formed LLF 5 and so on.

Each record within the log is associated with a unique 8-byte integer called the Log Sequence Number
(LSN) made up of two parts: a4-byte LLF _id and a 4-byte offset withinthe LLF. The LSN of alog record
isthe LSN of the starting byte of the record. A log record is said to be before another if its LSN is smaller
than the LSN of the other log record.

The shaded portion between Minimum LSN (MinLSN) and the end of the log is called the active log. This
isthe portion of the log used for recovery after a system crash. In the figure above, \ fi | el. dat does not
contain any portion of the active log and is marked "inactive" while the rest of the files are marked "active"
as they contain some of the active log.

When a physical file becomes full and a switchover to another log file occurs, the old log file may be
backed up to an archive as shown in Figure 4-8 Transaction Log Representation. Once the contents of the

28

entire physical fileis backed up, it is marked “backed-up” and “inactive” and can be reused to store another
LLF. Inthe above picture, file\ fi | el. dat isavailableto bereusedto storeLLF9when\fi | e4. dat
isfull, but\ fil e2. dat isnot availablefor reuse sinceit is still "active".

To optimize writing log records, the log records are formatted in a region of memory called the log cache
(LC). Once the LC becomes full or if a user issues a checkpoint command, the contents of the LC is written
toLLF.

The log manager provides for both forward and backward scans of the log. In the backward scan, the log
manager returns the log records for a particular transaction which are linked in the backward direction. The
log manager reads each log record and finds the LSN of the previous log record from the current log
record. During this backward scan, log manager uses large I/O blocks in an attempt to read in more than
onelog record inasingle 1/0. Thiskind of scan is used by rollback of atransaction. In the forward
direction, the log manager starts at a given point and returns all the log records from that point to the end of
the log. The replication log reader uses this kind of scan.

4332 Lock Management

In a multi-user environment, there is a high probability that users will require the same resource during
their threads. SQL Server assures that users will not interfere with one another by invoking alock manager
that places locks on resources. There are six different lock types as follows:

» Exclusive - prevents access to aresource by concurrent transactions and is released at the end of the
transaction;

* Shared - allows concurrent transactions to read a resource but will not allow either transaction to
modify the data;

e Update- prevents another resource to concurrently attempting to modify the same resource. This lock
does not prevent concurrent transactions to read the resource;

e Intent - indicates that SQL Server wantsto acquire a shared or exclusive lock on some resource lower
down in the hierarchy. This removes the need to examine every row or page lock on the table to
determine if atransaction can lock the entire table;

e Schema - occurs when atable data definition language (DDL) operation or schema modificationsis
being performed and prevents users from accessing the schema; and

» Bulk update — prevents access to a database table when bulk-copying data into the table and the
TABLOCK parameter has been specified.

4333 Resource Locking

The lock manager has multi-granular locking capability that allows different types of resources to be locked
by atransaction. To minimize the cost of locking, SQL Server locks resources at a level appropriate to the
task. Thelock manager can lock these resources as follows (listed in order of increasing severity):

* Rowidentifier - used to individually lock asingle row within atable;

* Key-arow lock within an index used to protect key rangesin serial transactions;
» Page-—an 8 KB data page or index page;

* Extent - contiguous group of eight data pages or index pages,

* Table- entiretable, including all data and indexes; and

* DB - entire database.

4334 Spinlock

To alow mutually exclusive access to aresource, each thread requests ownership of the resource before
executing a section of code that accesses the protected resource. When it has finished executing the
protected code it relinguishes ownership, enabling another thread to become owner and access the protected
resource. The object that effects the exclusion mechanism is spinlock. The spin counter option of SQL
Server limits how many times athread can loop on alock before it temporarily sleeps. This allows other
tasksto run. When the thread wakes up, it retries the spinlock.

29

4335 Lock Escalation/De-escalation

Once alock is acquired, processing may result in changing the lock granularity by either of the following
processes:

* Lock Escalation —increasing the lock’s severity which results in minimizing the number of locks that
may be acquired by a transaction to avoid deadlock; and
e Lock De-escalation - minimize the locking by acquiring finer-grained locks on resources.

The lock manager scans the outstanding page locks to determine if the threshold of outstanding page locks
on atable are more/less than has been configured. When the threshold is exceeded, the lock manager
attempts to convert the table level intent lock into a more severe lock in order to release the underlying
page locks.

The lock manager also performs a periodic deadlock detection check for waiting lock requests by scanning
the thread list for threads waiting on alock request. Each of these threads has a flag indicating it has been
visited by the deadlock checker. If awaiting thread does not have this flag set, the deadlock manager will
set the flag and move on. If the flagis set, the thread has been waiting on alock for longer than the
deadlock detection period and is considered for lock escalation. If there are no other active locks associated
with alock, the lock will be released or de-escalate.

4.3.4 Replication

The SQL Server supports transactional replication of data between different SQL Server instantiations. All
or part of the datafrom a database is copied among SQL Servers. The evaluated configuration does not
support the concept of distributed databases. Distributed databases permit a single database to span
multiple SQL Servers. This section describes the replication architecture followed by a description of the
replication access control policy.

434.1 Replication Architecture

Replicated data is originated on a publisher’ s database and is copied onto a subscriber’s database. The
SQL Server that creates the data to be copied isthe publisher. The publisher writes data to a distribution
database located on a distributor. The SQL Server that receives copies of the dataiis called a subscriber.
There may be more than one publisher for a distribution database and there may be more than one
subscriber. The remainder of this section describes how the SQL Server performs replication.

An agent called alog reader reads the publisher’ s transaction log. The log reader is responsible for reading
the transaction log of the database to be replicated and moving new transactions marked for replication into
adistribution database. The log reader agent runs at the distributor. There is one log reader agent per
publisher serviced by the distributor. The distribution agent applies the transactions in the distribution
database to a subscriber. Transactions are applied in the same order, providing transactional consistency
with minimal latency in delivery to each subscriber. Thelog reader and distribution agents can be
scheduled to run at regular intervals looking for any new transactions or can be executed on-demand.

Transactions are passed to subscribers in one of two ways — push and pull transactions. The distribution
agent runs at the distributor for push subscriptions and at the subscriber for pull subscriptions. In the push
case, areplication thread on the subscriber polls the distribution database looking for new transactions.
The replication thread compares the transaction 1D in the distribution database with the last transaction ID
on the subscriber. New transactions are applied at each subscriber on a connection held by the distribution
agent. Inthe pull case, the distributor sends information to the subscriber.

Replication requires the agents to have avalid login account and password when connecting to a publisher,

distributor, or subscriber. The replication agents run under the security context of the SQL Server Agent
service. There are three cases where logins occur:

30

1. Thelog reader agent connects to the publishing database at the publisher and to the distribution
database at the distributor;

2. Inapush subscription, the distribution agent is located on the distributor and connects first to the
distribution database on the distributor. While connected to the distributor, the distribution agent
connects to the subscribing database at the subscriber; and

3. Inapull subscription, the distribution agent is located on the subscriber and connectsfirst to the
subscribing database on the subscriber. While connected to the subscriber, the distribution agent
connects to the distribution database at the distributor.

In additional to possessing avalid login, the distributor maintains a Publication Access List (PAL) that
specifies which subscribers are permitted to access which publication data.

4342 Replication Access Control

When replication is established, the administrator specifies an owner for the data on each publisher. By
default the owner for the data on the remote subscriber is the same as the data on the local publisher. All
access control decisions to the replicated data are managed with the local copy of the data. Permissions are
stored in the system tables and system tables do not replicate.

The implication of this security paradigm is that the data on the publisher and the subscriber will most
likely have different security permissions associated with it. The owner of the data on each publisher and
subscriber gets to set the permissions on the associated copy of the data. As new datais fed into the
subscribers, the subscriber owners, not the original owner, set the permissions. If the owner of the data
wants to maintain full control of the data, the data should not be replicated. Auditing is performed on the
local copy of the data.

4.4 Relational Engine

The relational engine comprises two main components and cursor support (see Figure 4-9 Relational
Engine Architecture). The two main components are the event handlers and the query processor. This
section discusses all of the componentsin the relational engine and their interaction with other components
in SQL Server.

31

ums
SCHED 1SCHED p
ODS
WorkQ 1... WorkQ
RELATIONAL ENGINE
QUERY
EVENT HANDLERS PROCESSOR
LOGIN COMPILER
LANGUAGE 4 DRIVER
ATTENTION_HANDLER 1. PARSE
2. NORMALIZE
3. PERMISSION
Locout 4, OPTIMIZER
v
PROCEDURE CACHE
- [COMPILED PLANS]
v
CURSOR < \‘ EXECUTION
ENGINE ENGINE
1
* v
STORAGE ENGINE

Figure 4-9 Relational Engine Architecture

441 EventHandlers

All requests from ODS to the relational engine are in the form of an ODS event. Every TDS protocol packet
has an event identifier. For all TDS packets, ODS trandates the TDS packet into an event_type and calls
the relational engine’'s event handler for the specific event_type. Event handlers belong in one of two
categories:

» Connection event handlers, which process client connects and disconnects; and
» Language event handlers, which process database language (TSQL) requests.
441.1 Server Events

Server events may be generated by ODS in SQL Server by calling one of two library routines and passing a
parameter identifying the type of event. When SQL Server internally calls an event handler to processa
server event, the event is not compiled or run from the procedure cache as are client events or server events
generated from administrative software running on the client.

Server generated events are identified in the following table:

32

EVENT
ACTIVATED DESCRIPTION OF EVENT

DISCONNECT | Requests a disconnect for the current client thread.

EXIT Requests an immediate shutdown.

SLEEP Requests pausing a started server.

RESTART | Requests continuing a paused server.

STOP Reguests a graceful shutdown, first waiting for client threads to terminate and then
shutting down.

Table 4-10 ODS Gener ated Events

4.4.1.2 Client Events

For all client events and server events generated by client tools, each event handler calls afunction within
the relational engine and passes the appropriate el ements of the TDS packet as arguments to the function.
Similarly, when SQL Server needs to send information to the client, it calls an event handler that
transforms the function call argumentsinto events, which are encapsulated in TDS packets, and returns the
event to the client.

The event handlers that service client event requests are the following:

e LOGIN;

e Language events,

e Attention events; and
« LOGOUT.

4413 Login Event Handler

Login event handler isthe handler that puts the server in arunning state, that is no client request other than
login will be allowed to pass ODS until the server isin this state. Login also enforces a "timeout” for login
event packets that are not followed by subsequent packets within a specific timeinterval®. Login buildsa
SVR_PROC structure and placesit on atime queue. If a subsequent packet does not arrive within the time
interval, the login event handler returns a " disconnect” request to ODS and the connection is disconnected.
When a subsequent packet arrives within the timeinterval, the login event handler removes SVR_PROC
from the timer queue and performs the following:

e Assertsthe server isin running state;

e Createsalogin record in the SVR_PROC structure;

e CdlsUMSto create a worker thread;

« Populatesthe SVR_PROC structure with the thread 1D, a pointer to the user context, and free memory
areg;

» Buildsthe security cache to maintain security state;

» Cdlsahandler to process the event type identified in the subsequent packet; and

» Sendsalogin acknowledgement back to ODS.

4414 Language Event Handler

The language event handler is called for al language events. For SQL server, the only language events are
TSQL commands and batches of TSQL commands. Thisisthe first event handler called to perform work
for the client application, therefore the language event handler calls UVS to create athread or fiber to
process the TSQL transaction. The language event handler sends one entire transaction to the compiler.
The results from the TSQL query are returned to this event handler, which in-turn returns the results to
oDs.

® The login timeout is to protect against spurious packets arriving (e.g. line noise) that by chance appear to
be alogin packet.

33

4415 Attention Event Handler

The attention event handler is called to process attention signals. Attention signals provide a way for client
applications and SQL Server to flag and monitor potential problems and error conditions. Attention events
are serviced as soon as they are detected.

An attention signal may come from ODS to the event handler, when a client-interrupt request or a broken
client connection has occurred, or the event handler can be called from within SQL Server when servicing a
reguest. The attention event handler also may be called when a client application sends an attention event to
guery for attention signals associated with the client connection.

4416 L ogout

The Logout event handler is called to disconnect the client application from the server. Logout is called
when the user executing the client application enters alogout. The Logout event handler is aso called when
aclient application executes an extended SQL (E-SQL) disconnect instruction or when the application
exits. Each of these events creates alogout TDS packet type that ODS routes to the Logout event handler.

The Logout event handler is called by SQL Server when it wants to disconnect after a thread has exceeded
its allocated inactive time. During the process of disconnecting, Logout callsthe UMS for deallocating and
clearing the execution context.

4.4.2 Query Processor

The query processor is composed of the compiler, the procedure cache, and the execution engine. The
query processor syntactically checks every TSQL statement, compiles every statement, checks permissions
to determine if the statement can be executed by the user associated with the request, builds and caches a
query plan, and executes the statement. It is within the query processor that all access checks are made.

4421 Compiler

The compiler is subdivided into the driver, parser, permission check, and the optimizer. The compiler first
compiles every TSQL statement that is to be executed by SQL Server. SQL Server will accept no
statements or procedures that could be directly executed without compilation by the compiler.

The process of building aquery planis called compilation. TSQL statement compilation occurs regardless
of the source of the statement or the number of statements included in one transaction. Each transaction is
compiled into one query plan. Because query plans are held only in the procedure cache and not on disk,
they must be rebuilt each time SQL Server starts.

44211 Driver

The driver determinesif an execution plan for the client request already exists in the procedure cache (see
Section 4.4.2.3 Procedure Cache on page 35). For every transaction of TSQL statement(s) to be executed
by SQL Server, the driver first looks through the procedure cache to seeif there is an existing execution
plan for the same TSQL statement(s) with the same execution context. SQL Server reuses any existing plan
it finds, saving the overhead of recompiling. If there is no existing execution plan, SQL Server continues
the compilation. If the execution plan isin the procedure cache, access checks are performed and the
execution engine is called to perform the statements.

44212 Parser

The Parser performs the second phase of TSQL statement compilation. The Parser scans each TSQL
statement, determines that the syntax is correct, and breaks it down into the logical units, such as keywords,
parameters, operators, and identifiers. An entire transaction is parsed and if there is a syntax error in any
one statement the processing ceases and an error is returned to the language event handler. If the syntax is
correct, each TSQL statement is broken into steps and a query treeis created.

44213 Permission Check

Once the parser has built the query tree, the compiler checks that the user associated with the application
has sufficient permissions to perform the TSQL statements within the transaction. The permissions check in
the compiler occurs before the query is optimized, since the optimization process is expensive. Permission
to access the object and the type of access requested is determined by checking the user ID, the type of
access requested by the user, the TSQL statement, and the permission identified inthe sysper m ssi ons
system table.

When the permission check fails, the compiler returns an error to the language event handler. The language
event handler sends a numerical error value to ODS, which in turn looksinthe sysnmessages system
table, retrieves the error message description and error number and returns this information to the client.
Access violation errors only identify whether access was denied to a database, or to alog file, but no further
granularity (e.g., table, and row) is reported. When a permission check is made while compiling asingle
batch of TSQL statements, the first permission failure returns an error and further compilation ceases.

Once the permission check has reported that the user has the appropriate permissions to perform the
transaction, a timestamp, the identification of each object, and the permissions associated with the access
check and the type of access granted are saved in a security cache that is associated with every user. This
timestamp is critical to the enforcement of the DAC. After an entry is made in the security cache for each
specific object, the TSQL statements associated with that object are optimized.

44214 Optimizer

The final phase of compilation isthe Optimizer. The Optimizer passes over the logical tree produced by the
parser multiple times to select aleast-cost execution plan. Once an execution plan is selected, the query is
rewritten into semantically equivalent queries. The Optimizer also finds algorithmic implementations for
each of these representations. Lastly, using one of these implementations, the optimizer produces a tree of
objects representing a query execution plan. There is one execution plan for each transaction.

The execution plan includes the method for getting an interface which implements positioning, retrieving,
updating, and inserting an object. The next phase, the “Execution” phase, calls this method and instantiates
these interfaces to actually produce the specific code which will generate the appropriate result for the
TSQL statement(s).

4422 Execution Engine

Query execution is performed by the Execution Engine and is the process of executing the plan chosen
during query optimization. The Execution Engine always retrieves the execution plan from the procedure
cache.

When, during the execution of a query, an attempt is made to access an object, the Execution Engine
verifiesthe permissions are still valid. The Execution Engine creates a hash pointer into the Security Cache
from the object identifier and checks the protection timestamp. |If the stamp is different than the time-
stamp insysper m ssi ons, then the Execution Engine updates the timestamp of the protection stamp in
the DBTABLE structure in the access methods and calls for arecompile. A recompile causes the request to
begin at the top of the compile cycle.

4423 Procedure Cache

SQL Server manages a pool of memory to store both execution plans and data buffers. The percentage of
the pool allocated to either execution plans or data buffers fluctuates dynamically. The part of the memory
pool used to store execution plansis called the procedure cache. The procedure cache stores previously
compiled execution plans

Execution plans have two main components:

1. Query plan

35

The bulk of the execution plan is a reentrant, read-only data structure that can be used by any number
of users. No user context is stored in the query plan. There are never more than one or two copies of
the query plan in memory; one copy for al serial executions and another for all parallel executions.

2. Execution context
Each connection currently executing a query has a data structure that holds the data specific to the
execution, such as parameter val ues and connection information. The execution context data structures
arereused. If auser executes a query and no execution context structure for that planisin use, it is
reinitialized with the context for the new user.

Certain changes in a database can cause an execution plan to be either inefficient or no longer valid, given
the new state of the database. Once an execution plan is marked invalid, the execution engine will not
attempt to execute the plan. A new plan must then be recompiled for the next connection that executes the

query.

After an execution plan is generated, it staysin the procedure cache. SQL Server ages old, unused plans
out of the cache only when space is needed. Each query plan and execution context has an associated cost
factor that indicates how expensive the structure is to compile. These data structures also have an age field.
Each time the object is referenced by a connection, the age field is incremented by the compilation cost
factor. The lazywriter process periodically scansthe list of objectsin the procedure cache. On each scan
the lazywriter decrements the age field for each object by one. The lazywriter process deallocates an object
if three conditions are met:

¢ The memory manager needs memory and all available memory is currently used;
« Theagefield for the object is zero; and
» Theobject isnot currently being referenced by a connection.

Because the age field isincremented each time an object is referenced, frequently referenced objects are not
aged from the cache. Objectsthat are infrequently referenced are soon eligible for deallocation, but are not
actually deallocated unless memory is needed for other objects.

4.4.2.4 Cursors

The set of rows returned by a SELECT statement consists of all the rows that satisfy the conditionsin the
WHERE clause of the statement. This complete set of rows returned by the statement cannot always be
handled effectively by an interactive application; therefore these applications use the cursor mechanism to
work with one row or a small block of rows at atime.

SQL Server supports three types of cursors:

Stetic Cursors -
Both cursor size and content are fixed once the cursor is populated. Creates a separate read-only
copy (Snapshot Table) of the query results with the same format as the original query.
Keyset cursors -
Both cursor size and content are fixed once the cursor is populated but value changes made by the
cursor owner and committed changes made by other users are visible. Creates a temporary table
(Keyset Table) within the address space of the requestor that contains bookmarks, keys and
timestamps. Rows deleted from the keyset are still members of the cursor; however they are
marked NULL.
Dynamic Cursors -
Cursor can be opened independently from an underlying table. A fetch buffer is established for
update and refresh operations. A dynamic cursor can be updated, and the actual fetch isinitialized
when the cursor is opened and closed when the cursor is closed.

The following operations can be performed on cursors: Declare, Open, Fetch, Update, Insert, Delete, Close,
and Deallocate. Declare and deallocate perform no operations with cursor data, they establish and discard a

36

cursor. The close operation truncates worktables from the underlying query. Open causes a query to be
populated with the underlying table data for Static and Keyset cursors. For Dynamic cursors an open
initializes the query but no datais transferred to the cursor. The table or fetch buffer is returned to the
client asisthe response to any query. The update and insert commands are used to update values and rows
in the Keyset and Dynamic cursors.

45 SQL Server Agent

SQL Server Agent is a separate executable program that executes jobs and alerts defined by SQL Server
users. It runs as a service named SQL ServerAgent using the same account credentials (i.e., name and
password) as the SQL Server.

A job defines atask. Each job has one or more steps; each step specifiesa TSQL statement, Windows
command, executable program, or replication agent. Jobs can be run once, scheduled to run at periodic
intervals, or specified to run when the server isidle. Job definitions are stored inthe sysj obs system
table. The job owner isthe individual who creates ajob or for whom the job is created.

The Agent communicates with the SQL Server using the Windows NT Local Procedure Call (LPC)
mechanism. The LPC facility isaWindows NT Executive subsystem that implements interprocess
communication between two threads on the same system. The port object is the main data structure
supporting the LPC mechanism. LPC communication is established and protected as described below.

The SQL Server process creates a connection port by providing a name and a security descriptor to the LPC
create function. A connection port is a named port that is a server connection request point; clients can
connect to the server by connecting to this port. Connection ports have names, making them visible to all
Windows NT processes. These names are used as parameters in the calls to LPC made by processes to set
up a communication channel with the SQL Server. The connection port name is placed in a directory
specified by the attributes when the port object was created. The only access associated with aport is
Port_Connect access. The Agent makes a Port_Connect request to the SQL Server’s communication port
to establish a communications path with the SQL Server.

Asaresult of the SQL Server accepting the connection request, unnamed communication ports are created
by LPC. A communication port isan unnamed port used by a particular client thread to communicate with
aparticular server. LPC creates a client communication port and a server communication port for each
connection request accepted. The Agent communication port isinitialized with aflag set indicating it isa
client communication port and pointers to the connection port and the SQL Server communication port.
The SQL Server communication port isinitialized with aflag set indicating it is a server communication
port and pointers to the connection port and the Agent communication port. Communication ports are
associated with a queue to which the Agent or SQL Server queues its outgoing messages. Windows NT
does not provide for the sharing of communication ports.

After the Agent has established an LPC connection with the SQL Server, the Agent pollsthe SQL Server
by logging in and requesting any entries from the sysj obs system table. If any jobs have been submitted,
the Agent processes those jobs and logs into the SQL Server at the scheduled time to run the job. When
running ajob, the Agent performs the job steps as the job owner. Only the administrator can submit jobs
that contain Windows NT commands. Untrusted users do not have the privilege to start an operating
system command. All audit records reflect the job owner in the audit trail.

4.6 Backup and Restore

The following sections discuss database backup and restore as they relate to the database administrator and
other authorized users.

4.6.1 Backup/Restore User Databases

The sysadmin is the owner of system data and is the only user authorized to perform system database
backups and system database restores. The sysadmin, owner of the data, a fixed backup-database role, and
other authorized users may backup and restore user databases.

37

The file on which abackup is stored is an ordinary Windows NT file. The file owner will be the account
under which the MSSQL Server service runs. The Trusted Facility Manua (TFM) states that backup files
are to be made accessible to only administrative accounts or groups.

There exists a unique situation where the ownership of a database and the tables therein, as defined in the
DAC permissions list, may belong to one user prior to a backup but changes at the completion of arestore
process. This happens when user “A” owns a database and its tables, and grants permission to user “B” to
backup/restore the database. If user “B” has CREATE authorization, backs up the database and then
restoresit to anew database, user “B” becomes the owner of the database but the ownership of the tables
remains with user “A”. If the WITH DBO_ONLY option was specified on the RESTORE DATABASE
statement, user “A”, the owner of the tables, is not authorized to access the tablesin the restored database
until user “A” is granted DAC permission to the database.

The TFM and Security Features User’s Guide (SFUG) identify this situation and describe what must be
done and by whom to bring ownership of the database back to the original owner.

4.6.2 Bulk Copy Program (BCP)

The following subsection describes the use of the Bulk Copy (BCP) utility program when loading data
from adatafile into a database or copying data from a database tables to data files.

46.2.1 Bulk Load

The bulk copy program, called BCP, allows usersto load or unload large quantities of data from databases.
The relational engine of SQL Server assures DAC compliance for the BCP utility to support loading or
importing large batches of user data located on a user data file into a database table. Each batch of data
processed is considered a completed transaction (see Section 4.3.3 Transaction Management on page 27).
This causes all data or log pages that have been modified after they were read into the buffer cache, but
whose modifications have not yet been written to disk, to be guaranteed to be written to disk. SQL Server
always generates automatic checkpoints, regardless of the setting of relevant startup database options.

46.2.2 Bulk Unload

The storage engine of SQL Server assures DAC compliance for the BCP utility to be invoked to copy a
database table to a data file in a user-specified format. Any user may invoke BCP, but accessto the
database table is controlled by DAC permissions.

4.6.3 Backup Devices

SQL Server backups are stored using Microsoft Tape Format (MTF) and may be stored on disk or tape.
MTF enables SQL Server backups to coexist on the same media as non-SQL Server backups, provided that
the backups use MTF. For example, both SQL Server backups and Microsoft Windows NT backups can
exist on the same media.

SQL Server supports backup striping. A striped backup is one directed to more than a single device on a
single mediatype. That is, abackup can be written to two tape devices but cannot be written half to atape
and the other half to a disk.

All media used for backup begins with a media header describing the media. The media header or nameis
usually written once and remains intact for the life of the media. This allows the data on the mediato be
tracked. Consistent use of media names results in correctly identifying the media and preventing errors,
such asreading or over-writing mediathat is encrypted or protected with a password. When SQL Server
overwrites the media, existing contents of the media are completely overwritten with the new backup.

4.7 Startup and Shutdown

An administrator using the Microsoft InstallShield program installs the SQL Server. To install the SQL
Server, there must be aWindows NT account created under which the SQL Server runs and that account

38

must have the four privileges described in Section 3.3.1 Operating System Privileges on page 17. During
startup the first step for the SQL Server isto establish communications with the Windows NT Service
Controller. Communication with the Service Controller isaccomplished viaLPC. After connecting with
the Service Controller, the SQL Server readsin its parameters from the command line or from the Registry
if none are supplied viathe command line. Example parameters are default language, fiber or thread mode,
login timeout, and maximum number of user connections.

Within the SQL Server process, the first action taken is to read the master database information and load
the boot information. Next, the UM S is sent the fiber-mode configuration parameter identifying whether
SQL Server will perform task management using fibers or threads. The first manager to start is the buffer
manager, followed by the memory manager. With the memory manager started, the SQL Server allocates
its memory structures and procedure cache. Next thet enpdb, nmast er db, and nodel db are al read
into memory. Finaly, ODSis started and SQL Server isready to receive user connections.

During a shutdown, the SQL Server issues a checkpoint for each database and tries to obtain an exclusive
lock. If an exclusivelock is obtained, then no users are using the database and it can be shutdown safely.

If an exclusive lock cannot be obtained, then the database needs to be recovered during the next boot of the
SQL Server. Asfor the SQL Server process, the shutdown process is straightforward after the databases
have been closed. The SQL Server shuts down its engines and terminates.

4.8 Administrator Tools

The Administrator tools listed in this section are the applications to be used by an Administrator to manage
the TCB. These are the only tools the administrator may use in the evaluated configuration. All of the
tools run in user mode on the client. The Administrator tools are only in the TCB because a privileged
Administrator must use them to manage the TCB.

The set of administrator toolsincluded in the evaluated configuration is. Enterprise Manager, Query
Analyzer, Client Network Utility, and Profiler. The audit analysistool is SQL Server itself and is not
further described in this section.

4.8.1 Enterprise Manager

SQL Server Enterprise Manager is a graphical tool that alows for system-wide configuration and
management of SQL Server and SQL Server objects. SQL Server Enterprise Manager is used to:

e Manage logins, permissions, and users;

e Manage devices and databases,

* Back up databases and transaction logs; and

* Managetables, views, stored procedures, triggers, indexes, rules, defaults, and user-defined data types.

SQL Server Enterprise Manager also provides:

* A scheduling engine;
e Administrator alert capability; and
e A built-in replication management interface.

4.8.2 Query Analyzer

SQL Server Query Analyzer is an interactive, graphical tool that enables an administrator to write queries,
execute multiple queries simultaneously, view results, analyze the query plan, and receive assistance to
improve the query performance. Additionally, the Query Analyzer allows the administrator to retrieve
Transact-SQL syntax help.

4.8.3 Client Network Utility

The SQL Server Client Network Utility is used for managing the client configuration for Net-Libraries. It
isused to add or change Net-Librariesin the client. The administrator uses this tool to configure the three

39

Net-Librariesin the evaluated configuration during installation. Configuring the client Net-Library with
the Client Network Utility only affects connectionsto SQL Server. It does not reconfigure the network
protocol used by the client operating system.

4.8.4 Profiler

The Profiler isagraphical tool that permits the administrator to view the audit trail. The administrator may
use thistool or may choose to load the audit trail into a table and use the query analyzer for viewing audit
data.

40

41

5 Security Architecture

This chapter describes the security architecture of SQL Server. This chapter assumes the reader is familiar
with the information provided in Chapters 2-4. The first portion of this chapter describes all the protected
resourcesin SQL Server; specifically subjects and objects. The second portion describes the SQL Server
security policies: identification and authentication, roles, discretionary access control, auditing, and object
reuse.

51 Protected Resour ces

This section discusses the subjects and objectsin the SQL Server. The remainder of this chapter describes
the security policies applied to the protected resources introduced here.

5.1.1 Subjects

Subjects within the SQL Server are either threads or fibers depending upon the execution mode selected by
the administrator. A thread or fiber isinitialized on behalf of a user connection to the SQL Server.
Associated with each thread or fiber is a data structure which holds al security relevant information about a
subject. Included in a subject’s associated data structure are the user’s database ID, Windows NT SID,
roles, Windows NT groups, security cache, current database, and execution context.

512 Objects

An object isan entity in which untrusted processes can store user data and control sharing with other users.
The set of objectsin the SQL Server TCB is distinct from the objectsin the Windows NT TCB. The SQL
Server objects are databases, tables, columns, view definitions, stored procedures, defaults, rules, and user-
defined functions. The remainder of this section identifies the common characteristics among the objects
and briefly describes each object.

All objects except columns have an owner that is originally assigned to be the object’s creator. The owner
of the table also owns the columns in the table. Only the sysadmin or db_owner can change ownership of
an object. By default, al objects are accessible only to the owner. The owner must grant access before
anyone else can access an object.

A database is a collection of related information organized into tables. A table isamatrix of information
organized into rows and columns. Access can be granted to specific columnsin atable. Tables have a set
of resources that are protected by the access to the table. These resources are: indexes, keys, constraints,
and triggers. None of these resources can exist outside the table and permission cannot be granted access to
these resources.

A view definition isavirtual table based upon other tables or views. The data accessible through aview is
not stored in the database as a distinct object. Instead, the view definition is stored in the database. The
view definition forms the virtual table returned by the view. A stored procedureis a group of TSQL
statements compiled into a single execution plan.

A default, when bound to a column, specifies a value to be inserted into the column to which the object is
bound when no value is explicitly supplied during an insert. A rule, when bound to a column, specifiesthe

acceptable values that can be inserted into that column. A user-defined function provides a method for
usersto extend the TSQL language. A user-defined function may return a scalar or atable.

5.2 Ildentification and Authentication

521 SQL Server Identification

SQL Server uses severa different user identifiers. These are summarized Table 5-1 SQL Server Identifiers.

42

USER ALSO MNEMONIC | DESCRIPTION SQL SERVER
IDENTIFIER | KNOWN AS USAGE
LoginID e« Windows | loginname | NT user e saver
NT identifier--actual | authentication
Username name of the NT
login, which may
be different from
adatabase login
name used by
SQL Server.
Security e NT SID NT Security e server
[dentifier Security 1D Identifier that authentication
(SID) represents the
Login ID
Server User |« User ID suid SQL Server user |e server
ID « Login identifier authentication
e User
Account
SQL Server |« User ID loginname | Databaselogin |« database
Username |« Database access
User ID e object access
e SQL e auditing
Server login
« SQOL
Server
account

Table5-1 SQL Server Identifiers

Figure 5-1 SQL Server Identification illustrates the user identifiers used by SQL Server.

KEY
dNRUD, | OBJECE | <OUTPUT>
<ADMINISTRATOR ACTION>
USER INPUT: LOGIN IY

LoginD LOGINID USERID ROLE
(ke USERNAM)| NT40 (ACTUALLY ~ S88.0 > DB, SS___| DBOBJECT

SID 3 . S A UsRE

CREATELOGINID) GRANTLOGIN (LOGIN ID) GRANTDBACCESS (LOGIN ID, USER ID)

9D = NT Seourity ID that represantstheLogin ID

2Senurity Account canbea SQL Sarver user or rdle
adcnhavethe same nameas LoginID.

ADDROLE

ADDROLEMEMBER (ROLESECURITY ACCOUNT)
GRANT (OPERATION, OBJECT, ROLE)

Figure 5-1 SQL Server Identification

43

5.2.2 Authentication to SQL Server

Two authentication modes are available for SQL Server: Windows NT authentication mode and mixed
mode. In mixed mode, either Windows NT or SQL Server can perform authentication. Since only
Windows NT authentication provides secure validation and encryption of passwords, auditing, password
expiration, minimum password length, and account lockout after multiple invalid login requests, the
evaluated configuration is limited to Windows NT authentication. With Windows NT authentication, al
users, including the System Administrator, use Windows NT authentication instead of SQL Server
authentication.

Restriction of SQL Server authentication to Windows NT-only authentication is done on a system-wide
basis via the SecurityMode property on the Integrated Security object. The Windows NT Username for an
account takes the form <dorai n\name>, where donai n isthe Windows NT domain. The SID
associated with aWindows NT Username is used to represent the user in SQL Server. The SID isalso
mapped to a SQL Server Username in each database defined in SQL Server, and isincluded in database
audit records.

To establish a session with SQL Server, the user must have already established a client process with
Windows NT. With Windows NT authentication, the user does not have to specify another login ID or
password to connect to SQL Server, because SQL Server is able to determine that the user’s Windows NT
authentication isvalid. However, SQL Server does use aninternal local User ID for access control in a
database. ThisUser ID is mapped by the administrator to the Windows NT username.

When aWindows NT user triesto connect to SQL Server, SQL Server uses Windows NT APIs,
specifically the Security Service Provider Interface (SSPI), to obtain the user’s SID. Login security
integration, using SSPI, operates over network protocols that support trusted connections between clients
and servers.

Both the SQL Server and the client attempting to perform alogin communicate with their local NTLM
SSPIsusing LPC. When the client does not already have a connection established, it callsthe NTLM SSP
to getitsclient’s credentials. The NTLM SSP gets the credentials fromitslocal LSA. The client side
sends the RPC request, including the authentication information, to the SQL Server. The SQL Server calls
itsNTLM SSP via LPC to perform authentication. The server-side NTLM SSP generates a challenge it
sends back to the client through the SQL Server. The client receives the challenge and callsitslocal
NTLM SSP to generate aresponse. The response travels back to the SQL Server’sNTLM SSP and, if the
authentication succeeds, the SQL Server’s LSA creates a token for the user.

SQL Server gets the user account information from the token and matches it against the Windows NT
accounts defined as valid SQL Server logins. If SQL Server finds a match, it accepts the connection.

The server maintains user login account information inthe sysl ogi ns table. Thesysl ogi ns table
includes the NT username and security identifier (SID). It also tracks the account’s membership in any
server roles (see Section 5.3 SQL Server Roles on page 45). Identification and Authentication datais
protected from unauthorized access by the SQL Server DAC mechanism on the database tables containing
the data.

Once authenticated to SQL Server, to obtain access to a SQL Server database a Windows NT (and hence
SQL Server) user must have a corresponding user account and permissions in each database. SQL Server
Usernames and permissions are database-specific, i.e., each database has a distinct set of users with
corresponding permissions. While Windows NT Usernames are unique on an NT domain-wide basis, SQL
Server Usernames are unique only to a database, not across the entire server. Access control permissions
can be assigned by the administrator either directly to SQL Server Usernames or, aternatively, to roles.
SQL Server Usernames can be assigned to roles to facilitate administration.

If no SQL Server Username that maps to the Windows NT Username were to exist, the user process could
be logged onto a database under the guest username. However, to avoid this anonymous login, the guest
username is to be disabled in the evaluated product.

An aliasis a database username shared by several SQL Server Usernames. It alows more than one person
to assume the same permissions in a database very much like arole. Since auditing is still performed to the
level of theindividual user’s SID, aliases are permitted in the evaluated product.

5.2.3 Administration of User Accounts

The responsibility for managing SQL Server user accountsis divided between the server Security
Administrator and the Database Access Administrator roles. A server Security Administrator can manage
server-level user accounts. A Database Access Administrator can create or remove SQL Server Usernames
in a database (see Figure 5-1 SQL Server Identification). A SQL Server database user account is added to
adatabase for aWindows NT user or group, to which permissionsto perform activities in the database may
be granted. The TFM specifies that database access should be granted only to individual users, not to
groups of users, to ensure accountability.

5.2.4 Authentication Management

A member of the server System Administrator role must specify that only Windows NT Authentication is
allowed. When thisis done, a SQL Server User ID will not be valid for accessto SQL Server. Login
accounts are created, disabled, or deleted within Windows NT by an authorized administrator viathe User
Manager.

Because SQL Server receives the Windows NT user’s SID only at connection time, any revocation of the
user’srights (i.e., revocation of permissionsin sysl ogi ns table) will not affect the user’s access to SQL
Server until the next time a connection is made.

The SQL Server System Administrator specifies all the Windows NT accounts that can connect to SQL
Server. The user isidentified in SQL Server by Windows NT user account.

5.2.5 Password Length, Age, and Uniqueness

When an authorized Windows NT administrator sets password length, minimum and maximum age, and
password unigueness, the Windows NT OS enforces these specifications.

5.3 SQL Server Roles

This section discusses the roles used within SQL Server, both fixed (builtin) and user. The permissions
granted to the fixed roles cannot be changed or dropped. The fixed roles are also privileged, while user
roles are unprivileged.

5.3.1 Privileged Roles

Privileged roles are assigned to Login IDs (NT Usernames) within SQL Server and provide access to
privileged operations. The set of privileged SQL Server roles includes two types of roles for system and
security administration, i.e., server roles and fixed database roles. Privileged roles are described in Table 5-
2 Server Role Descriptions and Table 5-3 Database Role Descriptions. These roles are privileged only with
respect to SQL Server, not with respect to Windows NT. The server roles are as follows:

e sysadm n;

e serveradnmn;

e« setupadm n;

e securityadnin;
e processadm n;
e dbcreator;and
e diskadnin.

Note: Itisnot possible to create new fixed server roles. Roles can be created only at the database level.

45

The fixed database roles define permission sets within a given database. These are asfollows:

« db_owner;

« db_accessadni n;

e db_securityadm n;

e db_ddl adni n;

e« db_backupoper at or;

« db_dat areader;

« db_datawiter;

« db_denydat ar eader; and
e db_denydatawriter.

5311 Server Role Descriptions

Server Role

Description

System Administrator (sysadmi n)

The sysadmi n roleis privileged with respect to SQL
Server DAC, i.e., the role can bypass DAC. The System
Administrator has numerous responsibilities related to
the installation and setup of the server and management
of several security functions. System Administrator tasks
include any activity in SQL Server.

Server Administrator (ser ver adni n)

Theser ver admi n role can set serverwide
configuration options and shut down the server.

Setup Administrator (set upadni n)

Theset upadni n role can manage linked servers and
startup procedures.

Security Administrator (secur i t yadni n)

Thesecuri t yadm n role can manage logins and
CREATE DATABASE permissions, and read error logs.

Process Administrator (pr ocessadni n)

Thepr ocessadni n role can control executing
processes running in SQL Server. Only the

pr ocessadmi n role may execute the TSQL KILL
statement, and this statement is the only TSQL statement
that pr ocessadni n may execute.

Database Creator (dbcr eat or)

Thedbcr eat or role can create, ater, and restore
databases.

Disk Administrator (di skadni n)

The di skadni n role can manage disk files.

Table 5-2 Server Role Descriptions

5.3.1.2 Database Role Descriptions

Database Role

Description

Database Owner (db_owner)

Thedb_owner role hasall permissionsin the database,
i.e., the permissions of db_owner span those of all the
other fixed database roles.

Database Access Administrator (db_accessadni n)

Thedb_accessadni n role can add or remove user
IDs.

Database Security Administrator
(db_securityadm n)

Thedb_securi t yadni n role can manage al
permissions, object ownerships, roles and role
memberships.

Database DDL Administrator (db_ddl adni n)

Thedb_ddl admi n rolecanissue ALL DDL, but
cannot issue GRANT, REVOKE, or DENY statements.

Database Backup Operator (db_backupoper at or)

Thedb_backupoper at or role canissue DBCC,
CHECKPOINT, and BACKUP statements.

Database Data Reader (db_dat ar eader)

Thedb_dat ar eader role can select all datafrom any
user table in the database.

46

Database Role

Description

Database Data Writer (db_dat awri t er)

Thedb_dat awr i t er role can modify any datain any
user table in the database.

Database Deny Data Reader (db_denydat ar eader)

Thedb_denydat ar eader role can deny or revoke
SELECT permissions on any object.

Database Deny Data Writer (db_denydat awri t er)

Thedb_denydat awri t er role can deny or revoke
INSERT, UPDATE, and DELETE permissions on any
object.

Table 5-3 Database Role Descriptions

5.3.2 User Roles

User roles are those created in an operational database. They are similar in function to groups, in that they
combine users having the same access permissions. User roles specify the types of action an ordinary user
may perform on a database object, and are attached to database objects.

A roleisassigned to a set of users who are to be granted a permission set in adatabase. Every userina
database belongsto the publ i ¢ database role. In addition, a Database Security Administrator can create
user roles. Roles are granted to and revoked from individual |ogin accounts, and are stored with other user

account information in the system tables.

When auser logsin, any user roles granted to that user are activated. The user cannot turn on or off the

roles of which the user isa member.

5.4 Discretionary Access Control

SQL Server implements a DAC policy on its objects separate from the Windows NT DAC policy. Access
can be granted to DBM S objects to the granularity of users, groupsor roles. SQL Server datais protected

to the individual column level.

There are two system tables that are used to store DAC information; both of these system tables exist for all
databases. SQL Server storesthe DAC permission to use adatabaseinthesysuser s system table.
Within each database, SQL Server storesits DAC-related information for the objects within the database in
thesysper mi ssi ons system table. Eachrow inthesysper ni ssi ons system table can be thought
of asan ACL asit hasalist of users, groups, and roles and their associated permissions for an object.
Whenever a user attempts to access a DBM S object, that user’s security cache is checked and if necessary,
the associated row inthe sysper m ssi ons tableis checked to ensure the user has access. The objects
in the DBM S which have DAC applied are databases, tables, columns, views, stored procedures, rules, and
defaults. Indexes and triggers are properties of tables and are protected by the DAC on their associated

tables.

There are two ways a user can gain access to an object. Thefirst isto be granted access to the object and
the second is to have access based upon a database role. The remainder of this section discusses the
specific types of DAC permissions and how each permission fitsinto the overall DAC policy.

541 Permissions

There are three types of permissions that can be granted to an object — object, statement, and implied.
Object permissions are those permissions assigned to users based upon access to a particular object.

DBMS objects with object permissions are databases, tables, columns, views, and stored procedures. Table
5-4 Object Permissions shows the types of object permissions available on each object.

Permission

Object Type

USE

Database

SELECT, INSERT, UPDATE, DELETE

Entire table or view

SELECT, UPDATE

Columns of table or view

47

Permission Object Type
INSERT, DELETE Entire table or view
EXECUTE Stored procedure

Table 5-4 Object Permissions

The USE permission permits a user to access a database. The SELECT permission alows a user to read
the datain atable, column, or view depending upon where the permission was granted. The INSERT
permission allows a user to add arow to atable or view, while DELETE removesrows. The UPDATE
permission is used to changes data already in atable or column. EXECUTE permission alows a user to
invoke a stored procedure.

Statement permissions are those that allow a user to issue a particular statement. Statement permissions are
applied to the SQL statement itself rather than an object defined in adatabase. Like object permissions,
statement permissions are stored inthe sysper ni ssi ons systemtable. The statement permissions are:

» CREATE DATABASE;

» CREATETABLE;

« CREATEVIEW,

» CREATE PROCEDURE;

» CREATEDEFAULT;

* CREATERULE;

* CREATE FUNCTION,;

« BACKUPDATABASE; and
« BACKUPLOG.

Thereis no specific restore permission in the SQL Server. To restore a database over an existing database,
the user must have BACKUP DATBASE permission. To restore without overwriting a database, the user
must have CREATE DATABASE permission.

Implied permissions are given to users based upon predefined DBM S roles or owners of database objects.
There are three pre-defined roles that have implied permissions — sysadmin, db_owner, and object owner.
The sysadmin role has permissions to do or see anything within the SQL Server. The db_owner role has
permissions to control all data within adatabase. For example, the db_owner controls who can create
tables and what users can use the db_owner’'s database. The third category of implied permissionsis for
object owners. Owners of objects have a full set of permissions on the objects they create and can grant
permissions to other usersto use their objects. By default, the creator of an object is assigned to beits
owner. The sysadmin or db_owner can choose to reassign ownership to another user or group. Specific
rule and default permissions are implied permissions. Rule owners have permission to bind and unbind a
rule from a column or user-defined datatype. Default owners also have permission to bind and unbind a
default from a column or user-defined data type. Binding arule or default applies the applicable value to
the column or user-defined data type. Rule and default owners al so have permission to drop their associated
rules or defaults. The owner of a user-defined function also has several implied permissions. The owner
may alter or delete the user-defined function.

Thereisone set of TSQL commands that is handled differently with respect to the DAC policy. These are
DBCC commands. The DBCC commands act as the database consistency checker SQL Server. These
statements check the physical and logical consistency of a database. Many DBCC statements can fix
detected problems. Most of these commands are restricted to the administrator. All access checksfor
DBCC commands are imbedded within the commands and cannot be changed.

5.4.2 Granting and Revoking Permissions

Object owners assign permission using a grant and revoke mechanism. Object owners give access to other
users by granting those users a specific permission. Conversely, object owners can choose to deny a

48

specific access to auser aswell. In each of these cases, an entry isadded to the sysper mi ssi ons
system table with the appropriate permission granted or denied. When granting a permission to another
user, the grantor can choose to give the permission with the grant option. The grant option allows the
recipient to grant that same permission to other users.

To remove an entry from the sysper ni ssi ons table, usersissue the revoke command. The revoke
command results in the associated granted or denied permission being deleted. The revoke command is
issued by a user that granted apermission. In the case where a permission has been granted with the grant
option, the revoke cascades. Permission revoked from a user that has used the grant option causes the
original permission to be removed, as well as al permission granted by that user. For example, assume
User A granted User B select on atable 1 with the grant option. User B then grants User C and User D the
select option on table 1. When User A revokes User B’ s access, User C and User D also lose access.
Permission can be revoked on an object when a user has the object open. The revocation will not have an
affect until the next time the object is accessed.

5.4.3 Object Dependencies

There is a dependency between database and table level permissions. Before a user can access atable
within a database, the user has to be given permission to the database. Similarly, having accessesto a
database does not give a user access to any of its tables; users must be explicitly given permission to access
specific tables.

Views depend on other tables or views. Stored procedures depend on tables, views, or other stored
procedures. These two types of dependencies are called ownership chains. Often the same user owns all
views, stored procedures, and the objects they depend upon. In this case, the SQL Server does not make
the DAC check on any of the dependent objects; only access to the view or stored procedure is checked.

In the case where another user owns a dependent object, the ownership chain is broken and SQL Server
must make additional DAC checks. If the ownership chain of a stored procedure or view is broken, SQL
Server checks permissions on each object in the chain whose next lower link is owned by a different user.
In thisway, SQL Server allows the owner of the original datato retain control over who is authorized to
accessit. Figure 5-2 Ownership Chain Example shows an example of an ownership chain. Jane creates a
procedure and gives Sally access. In this example, SQL Server will perform access checks on procedurel,
procedure2, and table2.

JANE.PROCEDURE1

e AW

MIKE.PROCEDURE2 JANE.TABLE1

MIKE.VIEW1

'

JANE.TABLE2

Figure 5-2 Ownership Chain Example

5.4.4 DAC Algorithm

Before gaining access to an object, a user must pass a series of DAC checks. A few general rules apply.
Thefirst ruleisthat a denied permission always takes precedence. The denial can be at a user or group
level and will override any granted permission. A revoked permission removes only the granted or denied

49

permission at the level revoked (user or group). The same permission granted (or denied) at another level

such as agroup or role containing the user, group, or role still applies. A granted permission removes the

denied or revoked permission at the level granted. The same permission denied at another level, such asa
group containing the user, still applies. The DAC agorithmis as follows:

» For the set of IDs associated with a user, read though al entriesin the sysper ni ssi ons table
looking for specific access for:

— sysadmin

- db_owner

- UserID

— ID of any Windows NT groups

— ID of any SQL Server roles

¢ Inany instanceif a matching entry is found that denies access, access denied is returned.

« |If therequested accessisfound inthe sysper m ssi ons table and no deny accessis found, grant the
access.

55 Audit

SQL Server provides the ability to audit all security relevant events that occur within the DBMS. Thereis
a configuration option that enables C2 auditing available to the administrator. This section discusses how
audit records are created, what events are audited, and the information contained in the audit records.

55.1 Audit Record Generation

Audit isturned on or off by setting a C2 trace flag using the sp_configure system stored procedure. If the
flagis set to on, then all C2 relevant events are audited. Similarly, if the flag is off, no events are audited.
The C2 flag isread by the SQL Server at startup. If auditing isturned on, the SQL Server allocates a
memory structure called a Ctrace to manage the collection of the audit records and the output of those
records to disk. Within the Ctraceisalist of eventsto audit, columns of datato collect, and afilename of
where to write the collected events. SQL Server aso maintains two global audit buffers to store audit
records until the data can be flushed to disk.

Audit producersin the ODS event handlers and relational engine generate audit events. The producersin
these two areas check the Ctrace structure to determine if their particular action requires an audit event be
generated. If the audit switch ison for the producer’s event, the producer generates a record and adds it to
afield in the associated subject’ s Execution Context.

Auditing occurs at compilation time. The timestamp in the audit records reflects the time at compilation,
not execution. If during the execution checks, a change in the protection timestamp has occurred, are-
compilation is necessary and new audit records will be generated for the new access checks.

Memory is flushed from the audit buffers on a periodic basis. The records are written to a file configured at
audit startup. Windows NT DAC protects the file and only permits the SQL Server and Administrators
access.

5.5.2 Audited Events

With the C2 audit flag set, the SQL Server audits all security relevant eventsincluding logins, object
accesses, and administrator actions. All audit records are rowsin a SQL Server table with each row having
the following information:

» Type of event being recorded;
e Successor falure;

¢« SQL Server name;

e Dateand Time;

e User application name;

50

e Windows NT user name and SID;
e SQL Server PID; and
e Client computer name that originated request.

There are 15 categories of audit events. Table 5-5 Audit Categories enumerates the different types of
auditable events and identifies any information in the associated audit record that was not identified as

common information.

AUDIT CATEGORY

AUDIT RECORD CONTENTS

Login/logout

<nothing additional>

Grant/revoke/deny for object permission

Database | D, database name, database user name,
object name, object owner, object permissions,
Statement text

Grant/revoke/deny for statement permission

Database | D, database name, database user name,
statement type, statement text

Grant/revoke/deny a Windows NT account login

Target login SID, target login name

Modify alogin property (default language or default
database)

Target login SID, target login name

Add/remove alogin to afixed SQL Server role

Target login SID, target login name, target role
name

Add/remove a database user

Database ID, database name, database user name,
Target login SID, target login name, target database
user name, target role name

Add/remove a member to a database role

Database ID, database name, database user name,
target database user name, target database role
name.

Add/drop a database role

Database | D, database name, database user name,
target database role name

Statement permission used

Database I D, database name, database user name,
statement type, and statement text

Object permission used Database I D, database name, database user name,
object name, object owner, object permissions,
Statement text

Backup/restore Database ID, database name, database user name,
Statement text

DBCC command used Database name, database user name, statement text

Audit flag modifications

Statement text

SQL Server start/stop/pause

<nothing additional>

Table 5-5 Audit Categories

5.5.3 Audit Selection

The audit trail is stored on disk in binary format. In order to read the audit trail, the administrator must run
either the Profiler graphical tools or use a system-stored procedure to convert the audit trail from binary
format into a SQL Server table. Oncethetrail is converted into atable, the administrator can run SQL
gueries against the audit data. The administrator can select audit data based on any field in the database

including user name.

554 Audit Data Loss

The audit configuration for C2 provides an automatic audit log rollover capability. When afile containing
an audit fills, the SQL Server automatically creates a new file named audit_ YYYYMMDDHHSS_sequence
number>. The SQL Server will continue to rollover files until there is no more disk space available to it.
Once the SQL Server cannot create new audit files, it stops. The administrator must then free some disk

space and restart the SQL Server.

While processing, SQL Server storesits audit records in Execution Context structures. 1f SQL Server
crashes during processing, the maximum number of audit records that could be lost is 128K worth of data.

56 Object Reuse

Object reuse concerns the allocation of resources that have been used to store information and then released
back to the system for future use. A subject must not be presented data for which the subject has no access
through an interface available to untrusted user applications, even if the interfaceis used in an unusual or
non-typical way or through undocumented, yet publicly available, interface options.

Fundamentally, the object reuse security policy comprises four elements:

1. All user data on disk is managed by an evaluated Windows NT;

2. All user data within the address space of SQL Server is managed by the buffer manager which
overwrites user data buffers upon allocation;

3. When user dataistransferred between memory and disk, it is transferred in fixed-size pages; and

4. Nointerfaceis provided to access user data outside of constraints specified in the PFS and IAM tables.

5.6.1 Databases

A database is composed of at least two files managed by the Windows NT. No two databases share asingle
file, so that each fileis unique to a database. Whenever a database is created, Windows NT clears all
residual information in the underlying files.

5.6.2 Pages

Pages are fixed-length pieces of an underlying file. When a page isretrieved from disk, it isretrieved asa
full page and placed into a fixed-length in-memory buffer. Before a page is allocated, an in-memory
structure (page buffer), that isafull pagein size, is created for the page information. Thisin-memory
structure is filled with zeros upon alocation. Also afull page is always read into memory and written
from memory to disk.

5.6.3 Rows

Rows cannot span pages; therefore every action on arow must be encapsulated within an allocated page.
When arow is added to atable, the row will either be added in an aready assigned page or an extent will
be created. If the row causes the creation of an extent, page and buffer management insure the 8 KB areas
of pages or page buffersare clear. If the row is added to an existing page, there is no interface provided to
read outside of the row. When arow isdeleted, it is removed from the Index Allocation Map (IAM) and
the PFSis updated by placing the page area that was assigned to the row back on the freelist. Thereisno
interface provided to allow client applications to access a page area of a deleted row, or a page area outside
the row limitations.

5.6.4 System Data Structures

The in-memory data structures used by the Access Methods manage database objectsin memory. Thesein-
memory structures such as the DBTABLE, DES, and SDES contain user data. However, there is no exported
interface to access or manipulate these structures.

5.6.5 TDS Packets

TDS Packets are the unit of data transferred over one of the two supported Windows NT Interprocess
Control mechanisms (1PC); named pipes or sockets. Since the services provided by the evaluated version
of Windows NT provides object reuse protection for both 1PC mechanisms, the only potential issue
concerning object reuse (when sending and receiving TDS packets) is whether residual data within a
previous TDS packet buffer can be sent over a connection with the current TDS packet.

52

For every valid connection, also called a session that occurs after a successful SQL Server login has been
completed, ODS calls UM S to create a separate thread for the connection with its own per session state and
its own execution context. All TDS packets are communicated through TDS buffers. All TDS buffers
communicated over a specific connection are stored within the address space of the specific connection and
areisolated from all other connections, therefore there is no way for a user, communicating over one
connection, to receive residual information from a buffer previously communicated over another
connection.

53

6 Assurances

Assurance that the security mechanisms work correctly to enforce the system defined security policy isa
fundamental requirement of atrusted product. The following sections describe the assurance features of
SQL Server. A description of the mechanisms, which ensure that the SQL Server TCB cannot be corrupted,
is provided, followed by a description of the supporting evidence (i.e., design documentation and
specifications) for those mechanisms. The security testing performed by Microsoft is also described.

6.1 System Architecture

This section discusses the mechanisms used by SQL Server to protect itself from unauthorized
modification.

The composite TCB is composed of the Windows NT TCB and the SQL Server TCB. SQL Server runsasa
trusted subject with respect to the operating system. SQL Server only uses the following Windows NT
privileges:

e AssignPrimaryToken;
¢ IncreaseQuota;

e TCB;and

e ServiceLoginRight.

The Windows NT operating system is not compromised by SQL Server’s use of these privileges. They are
primarily used for running the SQL Server as a service, and logon for SQL Server Agent. SQL Server's
use of these privilegesis further described in Section 3.3.1 Operating System Privileges on page 17.

The Windows NT TCB implements adomain for its own execution that protects itself from tampering. The
SQL Server TCB relies on the Windows NT TCB to provide process isolation and protect it from external
tampering. Specifically, the SQL Server TCB runs as a protected server on the Windows NT operating
system and uses the operating system’s process isolation mechanisms to maintain and protect its execution
domain. TCB protected serversrun in a user-mode TCB process. Each protected server provides a set of
functions available to untrusted clients. Access to these functionsis via a client-server model using
Windows NT RPC.

SQL Server relies on the Windows NT DAC mechanism to protect its data and executable files from
tampering. Only the SQL Server service account may access datafiles directly. All SQL Server datais
stored in the MSSQL directory where SQL Server has full control access. No other user accounts have
access to thisdirectory. Untrusted users only have execute access to SQL Server executable files.

All subjects within the SQL Server have associated data structures, which contain the user context. One
assocaited structure contains the SQL Server unique user name and Windows NT SID. Thisstructureis
used to provide process isolation within SQL Server.

All attempts to access SQL Server protected objects are subject to the DAC and audit requirements. See
Audit and DAC sections for more information.

6.2 Security Testing

The vendor’ s test philosophy is one of API coverage for security relevant APIs. The vendor test suiteis
composed of two categories, stored procedures and TSQL commands. For each category, there are
associated access control, object reuse, and system architecture tests. In addition to the main categories, the
vendor has an audit test to specifically test the audit functions.

Each functional test suite is designed to provide coverage both in breadth and depth. The breadth of
coverage isrealized from direct testing of relevant APIs. The depth of coverageisrealized by sets of test

cases involving many combinations of parameters. Together, these functional test suites are designed to
provide coverage of the security functions of the TCB.

Microsoft's SQL Server testsinclude a number of test suites. A brief summary of each isincluded in the
table below. Thetest suites are mostly automated with very few exceptions. The tests are run using a
Microsoft created test harnessand the results may be examined using a Microsoft developed analysis tool.

TEST SUITE NAME

TEST SUITE DESCRIPTION

Stored Procedures — Thistest suite tests that stored procedures only the administrator can execute
System Architecture arein fact so restricted.

Stored Procedures — Thistest suite tests accessis enforced properly on stored procedures and the
Access Control objects they internally reference.

TSQL — Access Control

Thistest suite tests accessis granted, revoked, and enforced properly on
objects manipulated in the SQL Server.

TSQL — System

Architecture

Thistest suite tests that TSQL interfaces restricted to the administrator arein
fact so restricted.

TSQL — Object Reuse

Thistest suite ensures that any resources allocated have been properly
subjected to the reuse mechanism (cleared at allocation).

Audit

This test suite tests the audit mechanism including generation of audit events
and shutdown if audit trail isfull.

Undocumented APIs -
System Architecture

This test suite tests that undocumented APIs restricted to the administrator are
in fact so restricted.

6.3

Table 6-1 Test Suites

Design Documentation

The Philosophy of Protection for SQL Server is described in the Managing Security section of the SQL
Server Books Online and the Functional Specification for Auditing in SQL Server. This philosophy

addresses user authentication, database object protection, and auditing. It also depicts the security model of

SQL Server wherein users must be authenticated for system level access and then are subject to the
reference monitor prior to accessing any protected objects.

The tranglation of this philosophy to the TCB has been determined using documentation in many forms.
Documentation used in evaluating this system against the TDI class C2 requirements and in mapping the
philosophy of protection to the TCB are as follows:

e SQL Server Books Online —this set of documentation provides a compressive discussion of the SQL
Server from an administrator and user point of view. It details how to administer and use the SQL
Server, as well as provides programming reference information, including TSQL.

e Microsoft SQL Server Introduction book — this publicly available book, sponsored by Microsoft,
provides insight into the design of the SQL Server product.

« Numerous design specifications, design notes, and white papers — this set of documentation includes
design information for many components of the SQL Server. Some of this material isdated and is
either no longer valid or has required confirmation from other sources listed below.

55

e Microsoft Developer Network (MSDN) Library —This documentation (on CD-ROM or Microsoft web
pages) is readily searchable and provides hyper-links for easy browsing. It contains current
information about public APIs and some major component design details.

e Source Code Headers — source code headers are useful primarily to confirm or to determine whether
existing, but dated, information is still valid and to determine deviations from documented design that
need to be addressed (e.g., by going into the code itself). In addition, source code headers are useful to
confirm information derived from interaction with SQL Server developers.

e Source Code — source code was examined by the eval uation team to provide additional clarification
when appropriate.

Additionally, hands-on experience with actual SQL Server systems configured per the evaluation proved
invaluable in gaining confidence and in confirming the design of the system as described elsewhere. In
addition, interaction with devel opers (essentially training) served to help expedite evaluation analysis by
summarizing complicated features and providing pointers regarding where to start and specific topics to
reference.

56

57

7 Evaluation asa C2 System

7.1 Discretionary Access Control

Requirement

TCSEC

The TCB shall define and control access between named users and named objects (e.g., files and programs)
in the ADP system. The enforcement mechanism (e.g., self/group/public controls, access control lists) shall
alow usersto specify and control sharing of those objects by named individuals, or defined groups of
individuals, or by both, and shall provide controlsto limit propagation of access rights. The discretionary
access control mechanism shall, either by explicit user action or by default, provide that objects are
protected from unauthorized access. These access controls shall be capable of including or excluding access
to the granularity of asingle user. Access permission to an object by users not already possessing access
permission shall only be assigned by authorized users.

TDI

The discretionary access control requirements apply as stated in the TCSEC to every TCB subset whose
policy includes discretionary access control of its subjectsto its objects. Any TCB subset whose policy
does not include such discretionary access control is exempt from this requirement.

Applicable Features

SQL Server usesthe grant, revoke, and deny mechanism to control access between named users and named
objects. The use of grant, revoke, and deny allows usersto specify and control the sharing of objects with
other users, groups of users, or both. The grant, revoke, and deny mechanism has the ability to specify
access rights to be granted or denied at the granularity of anindividual user. By default, only an object’s
creator is given access to a named object. Only authorized users — those with appropriate DAC permission,
the owner, or those with DAC privileges can grant access. In order to limit the propagation of access
rights, the revoke permission is provided. See Section 5.4 Discretionary Access Control on page 47 for
more details.

Conclusion

SQL Server satisfies the C2 Discretionary Access Control requirement

7.2 Object Reuse

Requirement

TCSEC

All authorizations to the information contained within a storage object shall be revoked prior to initial
assignment, allocation or reallocation to a subject from the TCB's pool of unused storage objects. No

information, including encrypted representations of information, produced by a prior subject's actionsisto
be available to any subject that obtains access to an object that has been released back to the system.

TDI
This requirement applies as stated in the TCSEC to every TCB subset in the TCB.

58

Applicable Features

SQL Server ensures al resources visible at the TCB interface provide no residual user data. All resources
are cleared upon allocation. Files managed by the SQL Server are cleared according to the Windows NT
object reuse policy. See Section 5.6 Object Reuse on page 52 for more details.

Conclusion
SQL Server satisfies the C2 Object Reuse requirement

7.3 | dentification and Authentication
Requirement

TCSEC

The TCB shall require usersto identify themselves to it before beginning to perform any other actions that
the TCB is expected to mediate. Furthermore, the TCB shall use a protected mechanism (e.g., passwords)
to authenticate the user’sidentity. The TCB shall protect authentication data so that it cannot be accessed
by any unauthorized user. The TCB shall be able to enforce individual accountability by providing the
capability to uniquely identify each individual ADP system user. The TCB shall also provide the capability
of associating thisidentity with all auditable actions taken by that individual.

TDI
This requirement applies as stated in the TCSEC to the entire TCB. The cooperative action of the TCB
subsets making up the TCB must satisfy the requirement.

If the TCB is composed of TCB subsets, one TCB subset may either rely on a mechanism in another TCB
subset to provide identification and authentication services or provide the services directly. Each TCB
subset may maintain its own identification and authentication data or one central repository may be
maintained. |f each TCB subset hasits own data, then the information for each individual user must be
consistent among all subsets.

Applicable Features

SQL Server relies on Windows NT to perform authentication for it. SQL Server uses the token provided by
Windows NT to map the Windows NT user to a SQL Server user. This mapping provides the ability to
associate individuals with auditable actions within the SQL Server. See Section 5.2 Identification and
Authentication on page 42 for more details about identification and authentication.

Conclusion

SQL Server satisfies the C2 Identification and Authentication requirement.
7.4 Audit
Requirement

TCSEC

The TCB shall be able to create, maintain, and protect from modification or unauthorized access or
destruction an audit trail of accessesto the objectsit protects. The audit data shall be protected by the TCB
50 that read accessto it is limited to those who are authorized for audit data. The TCB shall be able to
record the following types of events: use of identification and authentication mechanisms, introduction of
objectsinto a user’s address space (e.g., file open, program initiation), deletion of objects, actions taken by
computer operators and system administrators and/or system security officers, and other security relevant
events. For each recorded event, the audit record shall identify: date and time of the event, user, type of
event, and success or failure of the event. For identification/authentication events the origin of request (e.g.,

59

terminal 1D) shall be included in the audit record. For events that introduce an object into a user’s address
space and for object deletion events the audit record shall include the name of the object. The ADP system
administrator shall be able to selectively audit the actions of any one or more users based on individual
identity.

TDI
This requirement applies as stated in the TCSEC to the entire TCB. The cooperative action of the TCB
subsets making up the TCB must satisfy the requirement.

A TCB subset may maintain its own security audit log, distinct from that maintained by more primitive
TCB subsets, or it may use an audit interface provided by a different TCB subset allowing the audit records
it generates to be processed by that TCB subset.

If the TCB subset uses different user identifications than a more primitive TCB subset, there shall be a
means to associate audit records generated by different TCB subsets for the same individual with each
other, either at the time they are generated or later.

Auditable events, in the case of a database management system, are the individual operations initiated by
untrusted users (e.g., updates, retrievals, and inserts), not just the invocation of the database management
system. The auditing mechanism shall have the capability of auditing all mediated accesses, which are
visibleto users. That is, each discretionary access control policy decision shall be auditable. Individual
operations performed by trusted software, if totally transparent to the user, need not be auditable. If the
total audit requirement is met by the use of more than one audit log, a method of correlation must be
available.

Applicable Features

The SQL Server TCB creates and maintains an audit trail of identification and authentication, access to
objectsit protects, deletion of protected objects, administrator actions, and other security relevant events.
Audit information is recorded in afile that is accessible only if appropriate DAC permission is obtained.
Only administrators are allowed access to the audit trail. All audit records include the time, user, event type
and success or failure, among other details. | dentification and authentication audit recordsinclude the
computer name originating the event. Audit records for access to and deletion of named objects include the
object name. The audit mechanism alows for an administrator to post-select the audit events in the system.
The administrator imports the audit trail into a SQL Server database and then uses the SQL Server to view
the audit trail. Thistool allows the administrator to selectively view the audit actions of users based on
individual identity. The audit subsystem can be configured to prevent the loss of audit records. See Section
5.5 Audit on page 50 for more details.

Conclusion

SQL Server satisfies the C2 Audit requirement.

7.5 System Architecture
Requirement

TCSEC

The TCB shall maintain adomain for its own execution that protects it from external interference or
tampering (e.g., by modification of its code or data structures). Resources controlled by the TCB may be a
defined subset of the subjects and objects in the ADP system. The TCB shall isolate the resources to be
protected so that they are subject to the access control and auditing requirements.

TDI

60

This requirement applies as stated in the TCSEC to every TCB subset, with the following additional
interpretations.

The TCB must provide domains for execution that are allocated to and used by TCB subsets according to
the subset-domain condition for evaluation by parts. A most primitive TCB subset must provide domains
for execution. A less primitive TCB subset must make use of domains provided by a more primitive TCB
subset. A less primitive TCB subset may provide further execution domains but is not required to do so.

If the TCB is composed of multiple TCB subsets, this requirement appliesto each TCB subset.
Applicable Features

The composite TCB is composed of the Windows NT TCB and the SQL Server TCB. The Windows NT
TCB implements a domain for its own execution that protectsit from tampering. The SQL Server TCB
relies on the Windows NT TCB to provide process isolation and protect it from external tampering.
Specifically, the SQL Server TCB runs as a protected server on the Windows NT operating system and
uses the operating system’ s process isolation mechanisms to maintain and protect its execution domain.
SQL Server relies on the Windows NT DAC mechanism to protect its data from tampering. Only the SQL
Server service account may access data files directly. All subjects within the SQL Server have data
structures to separate them from other subjects. All attempts to access SQL Server protected objects are
subject to the DAC and audit requirements. See Section 6.1 System Architecture on page 54 for more
information.

Conclusion
SQL Server satisfies the C2 System Architecture requirement.

7.6 System Integrity
Requirement

TCSEC
Hardware and/or software features shall be provided that can be used to periodically validate the correct
operation of the on-site hardware and firmware elements of the TCB.

TDI
This requirement applies as stated in the TCSEC to every TCB subset that includes hardware or firmware.
Any TCB subset that does not include hardware or firmware is exempt from this requirement.

Applicable Features

Thisrequirement is handled entirely by Windows NT.
Conclusion

SQL Server satisfies the C2 System Integrity requirement.
7.7 Security Testing
Requirement

TCSEC

The security mechanisms of the ADP system shall be tested and found to work as claimed in the system
documentation. Testing shall be done to assure that there are no obvious ways for an unauthorized user to
bypass or otherwise defeat the security protection mechanisms of the TCB. Testing shall also include a
search for obvious flaws that would allow violation of resource isolation, or that would permit unauthorized
access to the audit or authentication data.

61

TDI

This requirement applies as stated in the TCSEC to the entire TCB. If a TCB consists of TCB subsets
meeting the conditions for evaluation by parts, the satisfaction of the requirements by each TCB subset
satisfies the requirement for the entire TCB. Otherwise, security testing of the entire TCB must be
performed (even if the results of testing the individual TCB subsets were available).

Applicable Features

The evaluation team executed the vendor’ s test suite (automatic and manual) on the Desktop, Standard, and
Enterprise versions of the SQL Server. The evaluation team analyzed the results from the test runs and
worked with Microsoft to correct any anomalies found. The team also performed its own independent
testing to search for obvious flaws. Thisteam testing included a search of public domain sources for
known flawsin SQL Server.

Conclusion
SQL Server satisfies the C2 Security Testing requirement.

7.8 Security Feature sUsers Guide
Requirement

TCSEC

A single summary, chapter, or manual in user documentation shall describe the protection mechanisms
provided by the TCB, guidelines on their use, and how they interact with one another.

TDI

This requirement applies as stated in the TCSEC to every TCB subset in the TCB. This collection of
guides must include descriptions of every TCB subset in the TCB and explicit cross-references to other
related user’ s guides to other TCB subsets, as required. 1n addition, interactions between mechanisms
within different TCB subsets must be clearly described.

Applicable Features

Microsoft has a SFUG that describes the protection mechanisms available to users. It describes how to log
on, how to change a password, and how to lock and unlock the computer. It also describes how to use the
DAC mechanism to protect SQL Server named objects, including explaining the access revocation policy.

The SFUG isentitled C2 Administrator’s and User’ s Security Guide and is available on the Microsoft web
site at http://www.microsoft.com/security.

Conclusion

SQL Server satisfies the C2 Security Features Users Guide requirement
7.9 Trusted Facility Manual

Requirement

TCSEC

A manual addressed to the ADP system administrator shall present cautions about functions and privileges
that should be controlled when running a secure facility. The procedures for examining and maintaining the
audit files as well as the detailed audit record structure for each type of audit event shall be given.

TDI

62

This requirement applies as stated in the TCSEC to the TCB and to every TCB subset in the TCB.

This requirement can be met by providing a set of manuals, one for each distinct (non-replicated) TCB
subset. Each manual shall address the functions and privileges to be controlled for the associated TCB
subset. Additionally, it must clearly show the interfaces to, and the interaction with, more primitive TCB
subsets. The manual for each TCB subset shall identify the functions and privileges of the TCB subsets on
which the associated TCB subset depends. Also, the TCB subset’s manual shall identify which, if any,
configuration options of the more primitive TCB subsets are to be used for the composite TCB to operate
securely.

Any pre-defined roles supported (e.g., database administrator) by the TCB subset shall be addressed.

The means for correlating multiple audit logs and synonymous user identifications from multiple TCB
subsets (if such exist) shall also be addressed.

The trusted facility manual shall describe the composite TCB so that the interactions among the TCB
subsets can be readily determined. Other manuals may be referenced in this determination. The manuals
that address the distinct modules of the TCB and the generation of the TCB need to be integrated with the
other trusted facility manuals only to the extent that they are affected by the use and operation (versus the
development) of the composite TCB.

Applicable Features

Microsoft hasa TFM that describes the evaluated configuration and how to achieveit, privileges and their
assignment, and the detailed audit record structure. In addition, the TFM a so enumerates the tools
available for the administrator and summarizestheir use. Appropriate instructions and cautions are
provided for operating the system in the evaluated configuration.

The TFM for the SQL Server is separate from the Windows NT TFM. It identifies the privileges SQL
Server depends upon from Windows NT. All builtin database roles are described and the means for
correlating multiple audit logs and synonymous user identifications between SQL Server and Windows NT
are also addressed.

The TFM isentitled C2 Administrator’s and User’s Security Guide and is available on the Microsoft web
site at http://www.microsoft.com/security.

Conclusion

SQL Server satisfies the C2 Trusted Facility Manual requirement.
7.10 Test Documentation

Requirement
TCSEC
The system devel oper shall provide to the evaluators a document that describes the test plan, test

procedures that show how the security mechanisms were tested, and results of the security mechanisms
functional testing.

TDI
This requirement applies as stated in the TCSEC to the composite TCB.

Applicable Features

63

The test documentation is divided into three categories: TSQL, stored procedures, and audit. For each test
category, the test documentation includes a high-level test plan describing the testing philosophy for the
associated APIs. There are high-level test plans for TSQL, stored procedures, undocumented APIs, and
audit.

Within each test category are specific test plans that describe the test procedure and test cases for each API.
There are specific test plans for the following categories:

» TSQL —Access control, object reuse, system architecture;

« Stored Procedures - Access control, object reuse, system architecture;
¢ Undocumented APIs— System architecture; and

e Audit

Alsoin each test planis areference to the SQL source code file for each test case and the expected results
for the test case.

Conclusion

SQL Server satisfies the C2 Test Documentation requirement.

7.11 Design Documentation
Requirement

TCSEC

Documentation shall be available that provides a description of the manufacturer’s philosophy of protection
and an explanation of how this philosophy is translated into the TCB. If the TCB is composed of distinct
modules, the interfaces between these modules shall be described.

TDI

This requirement applies as stated in the TCSEC to the composite TCB.

Applicable Features

The Philosophy of Protection for SQL Server is described in the Managing Security section of the SQL
Server Books Online and the Functional Specification for Auditing in SQL Server. This philosophy
addresses user authentication, database object protection, and auditing. It also depicts the security model of
SQL Server wherein users must be authenticated for system level access and then are subject to access
checks prior to accessing any protected objects.

The trandation of this philosophy to the TCB has been determined using documentation in many forms.
Documentation used in evaluating this system against the TDI class C2 requirements and in mapping the
philosophy of protection to the TCB includes SQL Server Books Online, Microsoft SQL Server
Introduction book, numerous design specifications, design notes, white papers, Microsoft Developer
Network (MSDN) Library, Source Code Headers, and Source Code. The interfaces between the SQL
Server and Windows NT TCB'’s are documented in the design notes and design specifications. See Section
6.3 Design Documentation on page 55 for more details.

Conclusion
SQL Server satisfies the C2 Design Documentation requirement.

65

6 |ITCSEC Mapping

This section identifies C2-relevant Interpreted Trusted Computer System Evaluation Criteria (ITCSEC)

requirements and summarizes how they are addressed. The following table is organized by C2

requirement. Each section identifies the C2-relevant interpretations and summarizes how the requirements

of each interpretation are addressed.

Several ITCSEC requirements are met by TFM entries. Currently the team does not have an acceptable
version of the TFM. The evaluation team believes, however, that if Microsoft produces a document with

the agreed content that the requirement will be satisfied.

| C2 REQUIREMENT & INTERPRETATION | DISPOSITION
Audit

C1-CI-04-84 SQL Server audits al events that are security-
relevant in the context of the class C2
reguirements.

C1-CI-07-84 Thisinterpretation represents no class C2
requirement. Rather it affects class B2.

C1-CI-02-85 SQL Server allows selection of audit records
based on user identity (and other criteria).
Security levels and configuration management
are not applicable to class C2 products.

C1-CI-02-89 SQL Server allows administrators to select

whether the system will cease performing
auditable actions or to simply lose audit records
when the audit subsystem encounters a
predictable problem (e.g., the audit log is full). In
any case, the circumstances and amount of audit
records that could be lost isidentified in the
TFM.

[-0004 Enforcement of audit
settings consistent with
protection goals

All audit settings are immediately enforced for
subsequent (i.e., not already initiated) events.

[-0005 Action for audit log
overflow

SQL Server can be configured to cease
performing auditable actionsif the audit trail fills.
This option is described in the TEM.

1-0006 Audit of user-id for

Thisinterpretation represents no requirement.

invalid login
[-0043 Auditing use of named Itisnot clear what “similar to unnamed pipesin
pipe UNIX systems’ means. However, SQL Server

audits the introduction of objectsit protectsinto a
user’s address space — per the class C2 audit
requirement.

1-0073 OK to audit decision
regardless of whether
action completed

Thisinterpretation represents no requirement.

1-0286 Auditing unadvertised
TCB interfaces

Design Documentation

SQL Server audits all security relevant events
that occur from the use of the TCB interface.

1-0192 Interface manuals as
design documentation

More than interface reference manuals document
the TCB design.

66

[-0193

Standard system books as
design documentation

Discretionary Access Control

This interpretation applies to documentation other
than books for SQL Server. All documentation
fitting into this category has been confirmed with
other documents, developer interaction, source
code analysis, €efc.

C1-Cl-06-84 SQL Server does not use passwordsinits DAC
mechanisms.

C1-Cl-02-86 The specific implementation is not applicable to
SQL Server.

C1-CI-03-86 SQL Server protects (i.e., alows only accessto
authorized users) al named objects by default.

1-0002 Delayed revocation of DAC changes are immediately effective for

DAC access subsequent object access attempts. The SFUG
describes the access revocation policy.
[-0020 DAC authority for Users authorized by DAC can make named
assignment objects sharable. There are no roles defined
whose purpose is to control sharing.
1-0053 Public objectsand DAC Thisinterpretation effectively represents no class
C2 requirement.
1-0222 Passwords not acceptable | SQL Server does not use passwordsinits DAC
for DAC mechanisms.
[-312 Set-ID and the DAC Thisinterpretation represents no requirement.

reguirement

Identification and Authentication

C1-CI-02-83 The specific implementation is not applicable to
SQL Server.

C1-CI-02-86 The specific implementation is not applicable to
SQL Server.

C1-Cl-04-86 The specific implementation is not applicable to
SQL Server.

1-0001 Delayed enforcement of The TFM describes how privileges can be

authorization change

immediately revoked.

1-0096 Blanking passwords SQL Server accepts Windows NT authentication.
No password datais entered.
1-0234 One-time authentication Thisinterpretation represents no requirement.
mechanisms can be
acceptable
1-0240 Passwords may be used The specific implementation is not applicable to
for card input SQL Server.
1-0288 Actions allowed before SQL Server does not allow TCB mediated actions
I&A to occur (except the act of logging on itself)
before logging on.
[-0314 Password changesdo not | Thisinterpretation represents no requirement.
require authentication
Object Reuse
1-0041 Object reuse appliesto al | All resources available at the TCB interface have
system resources been subject to residua information analysis.

Security Features User’s Guide

1-0244

Security Testing

Flexibility in packaging
SFUG

The SFUG is appropriately packaged.

- |

67

System I ntegrity

1-0170 Functional testsrequired | Object reuse will be included as a security
for object reuse mechanism covered by the vendor’ s test plans.
e — R ——
System Architecture
[-0213 Administrator interfaceis | All evaluated administrator tools are considered

part of TCB

part of the TCB and are described in the TFM.

1-0144

Availability of diagnostics

Test Documentation

M achine specific diagnostics tools are part of the
Windows NT TCB. Diagnostics specifically for
the OS are available from Microsoft per the
Windows NT TFM instructions.

1-0281

Testing System
Architecture functions

Trusted Facility Manual

TCB protection will be included in the vendor’s
test plans.

1-0046 Detailed audit record The stored audit structure is described in the TFM
structure
1-0069 Flexibility in packaging The TFM is appropriately packaged.

TFM

69

Appendix A List of Acronyms

ACL
ANS|
API
BCP
BDC
DAC
DBCC
DBID
DBO
DBMS
DLL
DMO
EC
GAM
IAM

ID

110
IPAR
1SO
ITCSEC
LC
LLF
LLF_ID
LPC
LSN
MB
MinL SN
MSDN
MTF
NTFS
ODS
OLE
oS
PAL
PDC
PFS
SFUG
SGAM
SID
SQL
TCB
TCSEC
TDI
TDS
TEF
TFM
TRB
TSQL
TTAP
UMS

Access Control List

American National Standards Institute
Application Programming Interface
Bulk Copy Program

Backup Domain Controller
Discretionary Access Control
Database Consistency Checker
Database |dentifier

Database Owner

Database Management System
Dynamically Linked Library
Distributed Management Objects
Execution Context

Global Allocation Map

Index Allocation Map

Identifier

I nput/Output

Initial Product Assessment Report
International Standards Organization
Interpreted TCSEC

Log Cache

Logical Log File

LLF Identification

Local Procedure Call

Log Sequence Number

Megabytes

Minimum LSN

Microsoft Developer Network
Microsoft Tape Format

NT File System

Open Data Services

Object Linking and Embedding
Operating System

Publication Access List

Primary Domain Controller

Page Free Space

Security Features Users Guide
Small Global Allocation Map
Security Identifier

Structured Query Language
Trusted Computing Base

Trusted Computer System Evaluation Criteria
Trusted Database Interpretation
Tabular Data Stream

TTAP Evaluation Facility

Trusted Facility Manual

Technical Review Board

Transact SQL

Trust Technology Assessment Program
User Mode Scheduling

70

71

Appendix B System Tables
System Table Descriptions

The SQL Server system tables are kept in four system databases:

mast er database - Themast er database contains information on login accounts, system
configuration settings, the existence of other databases, and initialization information for user
databases and for SQL Server itself.

t enpdb database - Thet enpdb database provides server global temporary storage for temporary
tables, stored procedures, and system worktables. Thet enpdb isaccessible to all users as a scratch
area. Itistreated as any other database except that it does not persist from one SQL Server session to
another.

nodel database- The nodel databaseisused asan initialization template for all databases created
by SQL Server.

nsdb database - The nsdb database supports SQL Server Agent in scheduling alerts and jobs, and in
recording operators.

System tables fall into two categories: those that contain global information and those that contain
information specific to a single database within the server. The following are general descriptions of the
contents of those tables. The descriptions are broken down into seven tables:

Table B-1 Master Database Tables describes server-level system information tables that exist only in
themast er database;

Table B-2 SQL Server Agent Tables describes server agent tables that exist only in the nsdb
Database;

Table B-3 Database Backup and Restore Tables describes database backup and restore tables that exist
only inthe msdb database;

Table B-4 Replication Tablesin Master Database describes replication related tables that exist only in
themast er database;

Table B-5 Replication Tables in Distribution Database describes replication tables that reside in the
distribution database;

Table B-6 Database System Tables describes database system tables that reside within every database;
and

Table B-7 Replication Tablesin User’s Database describes replication tables that reside within the
user’s database.

The SQL Server TFM specifies that access to system tablesis to be restricted to the System Administrator.

Global Tables

Master Database Tables store server-level system information.

TABLE CONTENTS

sysdltfiles Describesfilesin a database.

syscacheobjects | Describes how cache is being used and provides |ook-up keys.
syscharsets Describes character sets and sort orders.

sysconfigures Describes each configuration option set by a user.
syscurconfigs Describes each current configuration option.

sysdatabases Describes databases on SQL Server system.

72

TABLE CONTENTS

sysdevices Describes disk backup file, tape backup file, and database file.

syslanguages Describes each language on SQL Server.

sydockinfo Describes al granted, converting, and waiting lock requests. Thistable isatabular
view of the internal data structures of the lock manager.

syslogins Describes each login account, including server user 1D and security identifier (SID).
Tracks whether an account isan NT login or a SQL Server login. Also tracks whether
an account is a member of server roles (including the sysadni n role).

sysmessages Describes possible SQL Server messages.

sysoledbusers Describes OLE linked servers.

sysperfinfo Maintains internal performance counters.

Sysprocesses Describes processes currently running. Includes user who issued command and

database being accessed. |dentifies subthreads operating on behalf of single process.

sysremotelogins

Describes each remote user who is allowed to call remote stored procedures. Includes
Windows NT user security ID.

sysservers

Describes each server that SQL Server can access as an OLE DB data source.

Table B-1 M aster Database Tables

Server Agent Tablesin the msdb Database contain data used by SQL server agents.

TABLE CONTENTS

sysaerts Describes alerts, which can take the form of various types of messages or
generated tasks.

syscategories Describes the categories used by SQL Server Enterprise Manager to
organize jobs, aerts, and operators.

sysdownloadlist Holds the queue of download instructions for all target servers.

sysobhistory Describes the execution of scheduled jobs by SQL Server Agent.

sysobs Describes each scheduled job to be executed by SQL Server Agent.

sysobschedules Contains schedule information for jobs to be executed by SQL Server
Agent.

sysobservers Stores the association or relationship of a particular job with one or more
target servers.

sysobsteps Describes each step in ajob to be executed by SQL Server Agent.

sysnotifications Describes each notification to be processed in response to an alert.

sysoperators Describes each system operator to be notified in response to an alert.

systargetservergroupmembers

Records which target servers are currently enlisted in a multi-server
group.

systargetservergroups Records which target server groups are currently enlisted in amulti-
server environment.

systargetservers Records which target servers are currently enlisted in a multi-server
operation domain.

systaskids Contains a mapping of tasks created in earlier versions of SQL Server to

SQL Server Enterprise Manager jobsin the current version.

Table B-2 SQL Server Agent Tables

Database Backup and Restore Tables are stored in the msdb Database. These tables store information used
by database backup and restore operations.

TABLE

CONTENTS

backupfile

Describes each data or log file that is backed up.

backupmediafamily

Describes each media family for backup.

73

TABLE CONTENTS

backupmediaset Describes each backup media set.

backupset Describes each backup set.

restorefile Describes each restored file, including files restored indirectly by filegroup name.

restorefilegroup

Describes each restored filegroup.

restorehistory Describes each restore operation.
Table B-3 Database Backup and Restore Tables
These tables are used by replication and stored in the master database.
TABLE CONTENTS
sysarticles Describes each article defined in the local database.
sysdatabases Describes databases on SQL Server system.
sysobjects Describes each object (constraint, default, log, rule, stored procedure, and so on)
created within a database.
syspublications Describes each publication defined in the database.
sysreplicationalerts | Describes information about the conditions causing areplication alert to fire.
sysservers Describes each server that SQL Server can access as an OLE DB data source.
syssubscriptions Describes each subscription in the database.

Table B-4 Replication Tablesin Master Database

These tables are used by replication and stored in the distribution database.

TABLE
CONTENTS

M Sagent_parameters Contains parameters associated with an agent profile. The parameter names
are the same as those supported by the agent.

M Sagent_profiles Describes each defined replication agent profile.

Msarticles Describes each article being replicated by a Publisher.

Msdistpublishers Describes each remote Publisher supported by the local Distributor.

M sdistributiondbs

Describes each distribution database defined on the local Distributor.

Msdistribution_agents

Describes each Distribution Agent running at the local Distributor.

Msdistribution_history

Contains history rows for the Distribution Agents associated with the local
Distributor.

M sdistributor

Contains the Distributor properties.

Mslogreader agents

Describes each Log Reader Agent running at the local Distributor.

Mslogreader_history

Contains history rows for the Log Reader Agents associated with the local
Distributor.

MSmerge agents

Describes each Merge Agent running at the Subscriber.

MSmerge history

Contains history rows for previous updates to Subscriber.

MSmerge_subscriptions

Describes each subscription serviced by the Merge Agent at the Subscriber.

Mspublication_access

Describes each SQL Server login that has access to the specific publication
or Publisher.

Mspublications Describes each publication that is replicated by a Publisher.

Mspublisher_databases Describes each Publisher/Publisher database pair serviced by the local
Distributor.

Msreplication_objects Describes each object that is associated with replication in the Subscriber
database.

Msreplication_subscripti

ons | Containsone row of replication information for each Distribution Agent

servicing the local Subscriber database.

M Srepl_commands

Contains rows of replicated commands.

74

TABLE

CONTENTS

MSrepl_errors

Contains rows with extended replication agent failure information.

Msrepl_originators

Describes each updateable Subscriber from which the transaction
originated.

M Srepl_transactions

Describes each replicated transaction.

MSrepl_version

Describes the current version of replication installed.

Mssnapshot_agents

Describes each Snapshot Agent associated with the local Distributor.

Mssnapshot_history

Contains history rows for the Snapshot Agents associated with the local
Distributor.

Mssubscriber_info

Describes each Publisher/Subscriber pair that is being pushed subscriptions
from the local Distributor.

Mssubscriber schedule

Contains default merge and transactional synchronization schedules for
each Publisher/Subscriber pair.

M ssubscriptions

Describes each subscription serviced by the local Distributor.

Mssubscription properties

Describes parameter information for pull Distribution Agents.

Table B-5 Replication Tablesin Distribution Database

Database Local Tables

Database System Tables are stored in every database.

TABLE CONTENTS

sysallocations Describes each alocation unit.

syscolumns Describes every column in every table and view, and arow for each parameter in a
stored procedure.

syscomments Contains entries for each view, rule, default, trigger, CHECK constraint, DEFAULT
congtraint, and stored procedure. The text column contains the original SQL
definition statements, which are limited to a maximum size of 4 MB.

sysconstraints Contains mappings of constraints to the objects that own the constraints.

sysdepends Contains dependency information between objects (views, procedures, and triggers),
and the objects (tables, views, and procedures) contained in their definition.

sysfilegroups Describes each filegroup in a database. Thereisat least one entry in thistablethat is
for the primary filegroup.

sysfiles Describes each file in a database. This system table isavirtual table; it cannot be
updated or modified directly.

sysforeignkeys Containsinformation regarding the FOREIGN KEY constraints that are in table

definitions.

sysfulltextcatal ogs

Lists the set of full-text catalogs.

sysindexes Describes each index and table in the database.

sysindexkeys Containsinformation for the keys or columnsin an index.

sysmembers Describes each member of a database role.

sysobjects Describes each object (constraint, default, log, rule, stored procedure, and so on)

created within a database.

syspermissions

Contains information about permissions that have been granted and denied to users,
groups, and rolesin the database.

sysprotects Contains information about permissions that have been applied to security accounts
with the GRANT and DENY statements.

sysreferences Contains mappings of FOREIGN KEY constraint definitions to the referenced
columns.

systypes Describes each system-supplied and each user-defined data type.

75

TABLE CONTENTS

These are the system-supplied data types and their 1D numbers.

Sysusers Describes each Windows NT user, Windows NT group, SQL Server user, or SQL

Server role in the database.

Table B-6 Database System Tables

These tables are used by replication and stored in the user’ s database.

TABLE

CONTENTS

MSmerge_contents

Describes each row modified in the current database since it was published.
Thistableis used by the merge process to determine the rows that have
changed.

MSmerge_delete_conflicts

Containsinformation for rows that were deleted because either they
conflicted with an update and lost the conflict or the delete was undone to
achieve data convergence. Thistableis stored in the database used for
conflict logging, usually the publishing database, but can be the subscribing
database if there is decentralized conflict logging.

MSmerge_genhistory

Describes each generation that a Subscriber knows about (within the
retention period). It is used to avoid sending common generations during
exchanges and to resynchronize Subscribers that are restored from backups.

MSmerge _replinfo

Describes each subscription. This table tracks internal information about the
sent and received generation.

MSmerge_tombstone

Containsinformation on deleted rows and allows deletes to be propagated to
other Subscribers.

sysarticleupdates

Describes each article that supports immediate-updating subscriptions.

sysmergearticles

Describes each merge article defined in the local database.

sysmergepublications

Describes each merge publication defined in the database.

sysmergeschemachange

Contains information about the published articles generated by the Snapshot
Agent.

sysmergesubscriptions

Describes each known Subscriber and is alocal table at the Publisher.

sysmergesubsetfilters

Containsjoin filter information for partitioned articles.

Table B-7 Replication Tablesin User’s Database

76

77

Appendix C Evaluated Components
Cl Operating System Components

Windows NT Server and Workstation 4.0 Service Pack 6aand C2 Update are the operating systemsin the
evaluated configurations. These product configurations encompass al TCB hardware and software that is
included in the evaluated configurations as described in the Windows NT 4.0 Service Pack 6a Final
Evaluation Report.

C.2 SQL Server Components

The evaluated software configuration includes SQL Server 2000 version 8.0 as configured by the TFM.

78

